注释: PV:来自光伏板的电力 负载:建筑物的负载需求 SOC max:电池充电状态的充电限制 SOC min:电池充电状态的放电限制 Bat_charge:电池充电的可用电力 Bat_discharge:电池放电的可用电力 出口:电网出口限制,kW 进口:电网进口限制*额定光伏功率,kW
太空任务规划和航天器设计紧密耦合,需要一起考虑才能获得最佳性能;然而,这个集成优化问题会导致大规模的混合整数非线性规划 (MINLP) 问题,而该问题的求解十分具有挑战性。为了应对这一挑战,本文提出了一种新的解决该 MINLP 问题的方法,即遵循多学科设计优化 (MDO) 的理念,通过增强拉格朗日协调方法迭代求解一组耦合子问题。所提出的方法利用问题的独特结构,将其分解为一组不同类型的耦合子问题:任务规划的混合整数二次规划 (MIQP) 子问题和航天器设计的一个或多个非线性规划 (NLP) 子问题。由于可以将专门的 MIQP 或 NLP 求解器应用于每个子问题,因此所提出的方法可以有效地解决原本难以解决的集成 MINLP 问题。还提出了一种自动有效的方法来寻找这种迭代方法的初始解,这样就可以在不需要用户定义的初始猜测的情况下进行优化。在演示案例研究中,使用子系统级参数化航天器设计模型优化了载人月球探测任务序列。与最先进的方法相比,即使没有并行化,所提出的公式也可以在更短的计算时间内获得更好的解决方案。对于更大的问题,所提出的解决方法也可以轻松并行化,因此有望进一步发挥优势和可扩展性。
热量储能系统对于提高太阳能热应用效率(STEA)是必要的,并消除了能源供应和能源需求之间的不平衡。在热量储能设备中,潜在的热储存装置(LHTE)由于其在几乎恒定的温度下的质量 /体积的高能量密度而受到了很多关注。尽管近年来已经进行了广泛的研究,但对PCM热交换器设计的综合研究很少见。本文介绍了对热存储单元中热传导主导的相变过程的数值和模拟研究。作为传热流体(HTF)流过管,以充电和排放循环和石蜡作为相变材料(PCM)流动。使用先前的假设,我们使用ANSYS软件设计并执行了热量存储系统的模拟。对各种半径还进行了深入的恒定研究。在模拟和分析后,我们得出的结论是,如果夸大管半径,传热空间也随着时间的降低,可以减少充电和排放储存在PCM中的能量。
摘要 -- 磁力齿轮与机械齿轮一样,在不同速度和扭矩之间转换动力;然而,磁力齿轮的非接触特性提供了比机械齿轮固有的潜在优势。使用遗传算法优化了不同温度下一系列齿轮比下的磁力齿轮。在不同的转子上以及切向和径向磁化磁体上使用不同等级的磁体材料可以稍微增加比扭矩,相对于使用单一磁体材料的设计。高极数转子需要比低极数转子磁体材料具有更高矫顽力的磁体材料,尤其是对于齿轮比较大的设计。虽然温度升高会导致可实现的比扭矩呈指数衰减,每升高 1 摄氏度复合减少约 0.4%,但温度不会显著影响最佳几何参数,主要影响最佳材料。齿轮比显著影响最佳几何参数,并会影响最佳磁体材料。此外,还采用遗传算法通过 3D 有限元分析来表征堆叠长度的影响。堆叠长度较短的设计有利于采用更薄的磁铁和更高的极数,并且可能能够使用矫顽力较低的磁铁材料。
摘要:提高功能复用程度,同时确保具有竞争力的成本下的操作可靠性和可制造性,是实现全面的样本到答案自动化的关键因素,例如,用于常见的、分散的“即时护理”或“即时使用”场景。本文展示了一种基于模型的“数字孪生”方法,该方法有效地支持了示例性离心气动 (CP) 可溶解膜 (DF) 虹吸阀的算法设计优化,以实现成熟的“盘上实验室” (LoaD) 系统的更大规模集成 (LSI)。显然,阀门及其上游实验室单元操作 (LUO) 的空间占用空间必须适合在测定方案中出现的给定径向位置,进入本地可访问的盘空间。同时,旋转驱动的 CP-DF 虹吸阀的保留率以及最具挑战性的带宽(与实验输入参数不可避免的公差有关)需要插入实际允许的频率包络的定义间隔内。为了实现特定的设计目标,定义了一组参数化指标,这些指标必须在其实际边界内满足,同时(在数值上)最小化频域中的带宽。虽然每个 LSI 场景都需要根据数字孪生单独解决,但提出了一套定性设计规则和指导性展示结构。
将基于氢的扇形耦合技术集成到基于氢的混合可再生能源系统(HRES)是一种创造能量生产商的有前途的方法,尽管在这个很大程度上没有开发的领域中进行的研究很少。在本文中,开发了一种行业耦合策略(建筑物和运输)并应用于网格连接的PV/Battery/H 2 HRES,以最大程度地提高大学校园的自给自足,并产生电力和H 2用于在阿尔及利亚Ouargla驾驶电车。使用ε-constraint方法将多个客观大小优化问题作为单个目标问题解决,其中能量成本(COE)被定义为要最小化的主要目标函数,而电源供应概率(LPSP)和非可再生用法(NRU)的损失都定义为约束。粒子群优化和本垒打软件用于模拟和优化目的。在本文研究的两种情况下,进行了敏感性研究,以确定电车和NRU对h 2需求的影响对拟议系统的技术经济可行性的影响,然后在优化中引入了新的可靠性因素,即H 2供应概率的损失(LHSP)。第一种情况的结果表明,通过设置NRU Max = 100%,没有H 2的系统提供了最佳的解决方案,COE的COE为0.016 $/kWh,达到网格奇偶校验,并具有13%的NRU。但是,通过设置NRU最大值= 1%,获得了由网格/PV/PV/Electrolyzer/燃料电池/储罐组成的优化配置,该配置的0%NRU和COE为0.1 $/kWh。在第二种情况下,观察到增加电车数量(即增加H 2的需求)导致LHSP,COE,NRU和CO 2排放量显着降低。得出的结论是,在考虑经济方面时,网格/PV组合是研究系统的最佳选择。但是,考虑到未来能源系统的不断增长的要求,与H 2相连的PV将是最好的解决方案,尤其是与运输系统结合时。
摘要。本文介绍了 MH114 高升力翼型的多目标优化。我们寻求一组帕累托最优解,使翼型升力最大化,阻力最小化。由于几何不确定性,升力和阻力被认为是不确定的。概率气动力值的不确定性量化需要大量样本。然而,由于 Navier-Stokes 方程的数值解,气动力的预测成本很高。因此,采用多保真替代辅助方法将昂贵的 RANS 模拟与廉价的潜在流量计算相结合。基于多保真度替代方法使我们能够在不确定的情况下经济地优化机翼的气动设计。
a 比利时蒙斯大学热能工程与燃烧系 (UMONS),Place du parc 20, 7000 Mons,比利时 b 比利时布鲁塞尔自由大学流体与热力学系 (FLOW),Pleinlaan 2, 1050 Brussels,比利时 c 比利时布鲁塞尔自由大学 (ULB) 和燃烧与稳健优化组 (BUVRNV),1050 Brussels,比利时 d 比利时鲁汶天主教大学 (UCLouvain) 力学、材料与土木工程研究所 (iMMC),Place du Levant, 2, 1348 Louvain-la-Neuve
摘要:化工厂的盈利能力与其可靠性直接相关,可靠性一直是化学工业关注的重点。本文解决空气分离装置概念设计阶段的问题,以尽量减少负收入,其中包括管道供应中断造成的损失以及提高可靠性的成本,包括拥有冗余单元和储罐。提出了一种基于马尔可夫链假设的混合整数线性规划 (MILP) 模型 (表示为 RST),并将其应用于空气分离装置的激励示例。此外,为了解决更大的上层结构,我们提出了一种博弈论算法,该算法将问题分解和重构为各个处理阶段的团队博弈,并在它们之间达到纳什均衡。结果还表明,可以轻松获得接近全局最优的良好初始化点,从而保证纳什均衡解的质量。通过大量示例说明,所提算法能够以比原始 MILP 模型 (RST) 的直接解决方案更短的时间解决全局最优问题。
自 1955 年以来,Panduit 的好奇心和解决问题的热情使公司的业务目标与市场成功之间建立了更有意义的联系。Panduit 为整个企业环境(从数据中心到电信机房,从桌面到工厂车间)创建了领先的物理、电气和网络基础设施解决方案。Panduit 总部位于美国伊利诺伊州廷利帕克,在全球 112 个地区开展业务,凭借其在质量和技术方面的领先地位以及强大的合作伙伴生态系统,帮助支持、维持和推动互联世界中的业务增长。