基因组工程技术的引入改变了生物医学研究,使得精确改变遗传信息成为可能。然而,创建一个有效的基因编辑系统需要对 CRISPR 技术和正在研究的复杂实验系统有深入的了解。虽然大型语言模型 (LLM) 在各种任务中都表现出了良好的前景,但它们往往缺乏特定的知识,难以准确解决生物设计问题。在这项工作中,我们引入了 CRISPR-GPT,这是一个增强了领域知识和外部工具的 LLM 代理,用于自动化和增强基于 CRISPR 的基因编辑实验的设计过程。CRISPR-GPT 利用 LLM 的推理能力来促进选择 CRISPR 系统、设计向导 RNA、推荐细胞递送方法、起草方案和设计验证实验以确认编辑结果的过程。我们展示了 CRISPR-GPT 帮助非专家研究人员从头开始进行基因编辑实验的潜力,并在现实世界的用例中验证了该代理的有效性。此外,我们探讨了与自动化基因编辑设计相关的伦理和监管考虑因素,强调负责任和透明地使用这些工具的必要性。我们的工作旨在弥合
基因组工程技术的引入改变了生物医学研究,使得精确改变遗传信息成为可能。然而,创建一个有效的基因编辑系统需要对 CRISPR 技术和正在研究的复杂实验系统有深入的了解。虽然大型语言模型 (LLM) 在各种任务中都表现出了良好的前景,但它们往往缺乏特定的知识,难以准确解决生物设计问题。在这项工作中,我们引入了 CRISPR-GPT,这是一个增强了领域知识和外部工具的 LLM 代理,用于自动化和增强基于 CRISPR 的基因编辑实验的设计过程。CRISPR-GPT 利用 LLM 的推理能力来促进选择 CRISPR 系统、设计向导 RNA、推荐细胞递送方法、起草方案和设计验证实验以确认编辑结果的过程。我们展示了 CRISPR-GPT 帮助非专家研究人员从头开始进行基因编辑实验的潜力,并在现实世界的用例中验证了该代理的有效性。此外,我们探讨了与自动化基因编辑设计相关的伦理和监管考虑因素,强调了负责任和透明地使用这些工具的必要性。我们的工作旨在弥合
锂离子电池由于可能发生失控传播而容易产生危害。在电池产品开发和随后的设计验证和安全认证的安全性测试中,热失失的发作由各种测试方法(例如指甲渗透,热坡道或外部短路)触发。这种故障引发方法会影响热量贡献的量和气体世代的组成。本研究比较了两种这样的触发方法,即外部加热和使用热激活的内部短路装置(ISCD)。在18650年的单细胞水平以及多个细胞配置水平下,在18650年的圆柱细胞中,在实验中研究了触发方法对总热量产生的影响。观察到失败的严重程度对于在单细胞水平下具有ISCD的细胞的严重程度较差,而在多个细胞配置水平上观察到了相反的结果。进行了初步的数值分析,以更好地了解相对于热失控的触发方法和传热条件的电池安全性能。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad3aae]
建筑信息模型 (BIM) 彻底改变了建筑、工程和施工 (AEC) 行业,改变了建筑生命周期数据的管理和可视化方式。通过将物理和功能特性整合到共享数字模型中,BIM 可以促进协作、最大限度地减少返工并简化规划和执行。在可持续性方面,BIM 支持“绿色 BIM”实践,通过启用能源建模和生命周期分析来减少碳足迹。然而,尽管取得了这些进步,BIM 仍面临互操作性问题,这主要是由于专有软件格式,导致孤立的数据孤岛阻碍了跨平台的有效数据交换。将人工智能 (AI) 集成到 BIM 中为这些挑战带来了突破性的解决方案。AI 通过自动化设计验证、冲突检测和实时数据分析来增强 BIM,将 BIM 转变为能够主动决策的自适应系统。AI 应用程序(包括预测性维护、生成设计和实时施工监控)有望提高安全标准、减少错误并改善生命周期管理。然而,AI 增强型 BIM 的采用受到技术、道德和财务挑战的阻碍,例如数据质量、隐私问题和高实施成本。通过标准化数据协议、员工技能提升和协作框架解决这些障碍可以最大限度地发挥 AI 驱动型 BIM 的潜力,提高建筑行业的可持续性、效率和弹性。
EPC(电子电源调节器)、用于 SSPA(固态功率放大器)的低压 DC-DC 转换器 机载军用卫星对产品开发和制造提出了终极挑战 作者:Tiva Bussarakons 当今军事空间应用的 EPC 需要设计解决方案和制造流程,以提供最可靠的产品和最高的信心。该解决方案必须包括防辐射组件、经过验证的设计传统和设计创新。混合组装技术的使用对于减小尺寸、重量和成本至关重要。预计设计分析和计算机模拟将与实际性能相匹配。设计验证、验收测试和制造流程的书面程序是程序标准。所有制造流程在实施前都必须记录并合格。简介:在卫星通信中,转发器是通信系统的核心。它们接收、处理、放大并将接收到的信号传输回地球或另一颗卫星。参考图 1。高功率放大器单元中的 SSPA(固态功率放大器)和 TWTA(行波管放大器)执行重要的放大功能。为应用选择 SSPA 或 TWTA 取决于多种因素。主要因素是下行链路载波频率和发射机功率要求。对于功率更高、频率更高的应用,通常选择 TWTA 而不是 SSPA。TWTA 的功率最高可达 200W,效率可高达 60-65%。SSPA 适用于较低频段和较低发射机功率的应用。最新的 SSPA 的功率最高可达 90 瓦。虽然 SSPA 的效率低于 TWTA,约为 25-30%,但它比同类 TWTA 具有尺寸和质量优势。图 1. 非常简化的 RF 转发器
时间表问题1到2025年或更早的项目,该项目的运作意味着什么?回答新的电气港工艺品(E-HC)设计必须根据参考设计和安全标准从2027年开始批准,以满足足够的时间进行设计评论和施工。为了支持这一点,该EOI的E-HC应该在2027年之前准备好进行商业采用 - 这意味着其设计和相关的支持机制(即运营模型,融资和保险解决方案)应在2025年准备好,以迎合足够的时间进行施工,测试,调试和设计验证。问题2 MPA对油轮和拖船等较大港口工艺品的计划是什么?回答开始时,该EOI主要着重于设计E-HC,该E-HC将取代大部分较小的,常规的港口飞船,这些港口量最适合全电动化,并共享适合聚合的共同参数。参与者也可能建议替代类型的港口工艺(例如油轮,拖船和其他较大的港口工艺)使该项目可以在第3节中考虑要求。根据EOI的结果,MPA可能会考虑采用类似的策略来满足其他港口手工艺类型的需求。EOI问题3的要求3是燃料电池技术还是EOI范围的其他零燃料的一部分? 回答此EOI的范围涵盖了经过验证的储能系统/技术(即 div> 电池),作为主要能源和/或与其他能源系统一起工作(例如) 超级电容器)。EOI问题3的要求3是燃料电池技术还是EOI范围的其他零燃料的一部分?回答此EOI的范围涵盖了经过验证的储能系统/技术(即 div>电池),作为主要能源和/或与其他能源系统一起工作(例如超级电容器)。
• 基本 FEOL 可靠性:栅极电介质中缺陷的产生会导致电介质击穿和器件性能下降 - Kenji Okada,TowerJazz 松下半导体 • 复合半导体可靠性 101 - Bill Roesch,Qorvo • 互连可靠性基础知识 - Zsolt Tokei,IMEC • VLSI 设计方法和可靠性设计验证 - Michael Zaslavsky 和 Tim Turner,可靠性模拟组 • 电迁移 101 - Cathy Christiansen,Global Foundries • NAND 闪存可靠性 - Hanmant Belgal 和 Ivan Kalastirsky,英特尔 • 芯片封装相互作用 (CPI) 及其对可靠性的影响 - CS Premachandran,Global Foundries • 故障分析的挑战 - 汽车和超越摩尔定律 - Ulrike Ganesh,博世 • 1. HKMG p-MOSFET 中 NBTI 的最新进展以及 2.现代 FINFET、ETSOI 和全栅极环绕 III-V 晶体管中自热的新挑战:从晶体管到平板电脑的视角 - Souvik Mahapatra(印度理工学院,孟买)和 Muhammad Ashraf Alam(普渡大学)• 汽车转型 - 从应用到半导体技术的成本、上市时间、可靠性和安全性驱动的设计优化 - Andreas Aal,大众汽车集团 • AlGaN/GaN 功率器件可靠性 - Peter Moens,安森美半导体 • 可靠性工程的系统遥测 - Rob Kwasnick,英特尔 • 高级 MOL 和 BEOL 可靠性 - Shou Chung Lee,台积电 • 汽车功能安全简介 - 历史、趋势和与可靠性的关系 - Karl Greb,NVIDIA • 相变存储器:从基础技术到系统方面和新应用 - Haris Pozidis,IBM • 系统可靠性 - Geny Gao,博士 • 先进封装和 3D 可靠性 - C. Raman Kothandaraman,IBM • 兼顾基于知识和基于标准的资格 - Bob Knoell,汽车电子委员会和 NXP • 自旋转矩 MRAM - Daniel C. Worledge,IBM • 现场容错、自我修复、检测和恢复技术的考虑因素 - Arijit Biswas,英特尔
• 基本 FEOL 可靠性:栅极电介质中缺陷的产生会导致电介质击穿和器件性能下降 - Kenji Okada,TowerJazz 松下半导体 • 复合半导体可靠性 101 - Bill Roesch,Qorvo • 互连可靠性基础知识 - Zsolt Tokei,IMEC • VLSI 设计方法和可靠性设计验证 - Michael Zaslavsky 和 Tim Turner,可靠性模拟组 • 电迁移 101 - Cathy Christiansen,Global Foundries • NAND 闪存可靠性 - Hanmant Belgal 和 Ivan Kalastirsky,英特尔 • 芯片封装相互作用 (CPI) 及其对可靠性的影响 - CS Premachandran,Global Foundries • 故障分析的挑战 - 汽车和超越摩尔定律 - Ulrike Ganesh,博世 • 1.NBTI 在半导体领域的最新进展HKMG p-MOSFET 和 2。现代 FINFET、ETSOI 和全栅极 III-V 晶体管中自热的新兴挑战:从晶体管到平板电脑的视角 - Souvik Mahapatra(孟买印度理工学院)和 Muhammad Ashraf Alam(普渡大学) • 汽车转型 - 从应用到半导体技术的成本、上市时间、可靠性和安全性驱动的设计优化 - Andreas Aal,大众汽车公司 • AlGaN /GaN 功率器件可靠性 - Peter Moens,安森美半导体 • 可靠性工程的系统遥测 - Rob Kwasnick,英特尔 • 高级 MOL 和 BEOL 可靠性 - Shou Chung Lee,台积电 • 汽车功能安全简介 - 历史、趋势和与可靠性的关系 - Karl Greb,NVIDIA • 相变存储器:从基础技术到系统方面和新应用 - Haris Pozidis,IBM • 系统可靠性 - Geny Gao,博士 • 先进封装和 3D 可靠性 - C. Raman Kothandaraman,IBM • 兼顾基于知识和基于标准的资格 - Bob Knoell,汽车电子委员会和 NXP • 自旋转矩 MRAM - Daniel C. Worledge,IBM • 现场容错、自我修复、检测和恢复技术的考虑因素 - Arijit Biswas,英特尔
高可靠性要求发动机控制单元如今已出现在许多应用中,通常涉及安全关键考虑,要求在无法容忍意外行为的环境中具有高可预测性和高可靠性的操作!典型应用包括航空电子设备、汽车和货运站重型机械的操作。这些环境表现出高水平的安全敏感方面,其中 ECU 在紧急情况下无法以适当的方式运行可能对生命和/或财产构成威胁,从而证明增加测试成本是合理的。有许多例子表明 ECU 的安全关键操作很重要。对于航空电子设备,一个这样的例子是喷气式飞机发动机的全权数字电子控制器 (FADEC) 的设计验证。FADEC 实际上是喷气式发动机的大脑,控制飞机发动机性能的各个方面,同时提供完全冗余以确保安全关键可靠性。可以理解的是,政府对商用飞机 FADEC 模块测试有着严格的规定,要求在各种硬件故障条件下安全或受控运行。故障插入目前在汽车行业使用的一个示例是动力传动系控制模块 (PCM) 整体测试的一部分。PCM 是现代车辆中最复杂的电子控制单元之一,需要对其功能进行严格而全面的测试。PCM 故障的后果可能会对 X-by-Wire 应用(一个统称,指在车辆中添加电子系统以增强和取代以前通过机械和液压系统完成的任务,如制动或转向)产生更大的影响,这些测试方法的重要性日益增加。“故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。”由于当今 ECU 设备的精密性和复杂性很高,因此需要特殊的测试方法。ECU 测试的一个重要方面是将电气故障引入系统,模拟由于腐蚀、短路/开路以及因老化、损坏甚至安装错误而导致的其他电气故障而可能发生的各种情况。故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。这种测试方法不仅容易出现人为错误,而且耗时 - 而时间就是金钱。传统测试方法通常涉及手动将电缆插入和拔出配线架,这远非理想。Pickering Interfaces 故障插入 BRIC TM 交换解决方案针对 ECU 验证,为这些实际场景提供了更为复杂的测试方法。
[1] E. Salmeron-Manzano和F. Manzano-Agugliaro,“电动自行车:全球研究趋势”,Energies,第1卷。11,否。7,p。 1894年7月2018,doi:10.3390/en11071894。[2] A. Raj,S。Paitandi和M. Sengupta,“商用电动自行车BLDC的设计验证和性能评估及其与不同可能设计的性能比较”,2019年国家电力电子会议(NPEC),Tiruchirappalli,印度Tiruchirappalli,印度IEEE:IEEE,2019年12月,PP。1-6。doi:10.1109/npec47332.2019.9034747。[3] N. Azizi和R. K. Moghaddam,“永久磁铁无刷直流电动机的最佳设计和最佳PID Controler参数的确定,以使用TLBO优化算法,以实现速度控制的目的”,第1卷。1。[4] R. Rakhmawati,Irianto,F。DwiMurdianto和G. T. Ilman Syah,“使用模糊逻辑控制系统中速度控制器永久性直流电动机的性能评估,2018年在信息和通信应用程序上的国际研讨会,Semarang:IEEE,Semarang:IEEE,IEE,sep.2018,sep.c.110–115。 doi:10.1109/isemantic.2018.8549813。 [5] J. Larminie和J. Lowry,《电动汽车技术》,第二版。 奇切斯特,西萨塞克斯郡,英国:威利(Wiley),约翰·威利(John Wiley&Sons)有限公司,出版物,2012年。 [6] S. J. Chapman,《电气机械基础》,第5版。 美国:McGraw-Hill,2012年。 1-7。 doi:10.1109/edpc.2013.6689736。 [9] L. Lu,X。Han,J。Li,J。Hua和M. Ouyang,“电动汽车中锂离子电池管理的关键问题的审查”,《电源杂志》,第1卷。110–115。doi:10.1109/isemantic.2018.8549813。[5] J. Larminie和J. Lowry,《电动汽车技术》,第二版。奇切斯特,西萨塞克斯郡,英国:威利(Wiley),约翰·威利(John Wiley&Sons)有限公司,出版物,2012年。[6] S. J. Chapman,《电气机械基础》,第5版。美国:McGraw-Hill,2012年。1-7。doi:10.1109/edpc.2013.6689736。[9] L. Lu,X。Han,J。Li,J。Hua和M. Ouyang,“电动汽车中锂离子电池管理的关键问题的审查”,《电源杂志》,第1卷。[7] A. Sinuraya,D。HaryantoSinaga和Y. Simamora,“对具有BLDC电动机驱动器的电动汽车的LifePo4电池大小,容量和充电分析”,在第四届教育,科学和文化创新国际创新会议上10.4108/eai.11-10-2022.2325395。[8] G. Freitag,M。Klopzig,K。Schleicher,M。Wilke和M. Schramm,“汽车设计中的高效率和高效的电动轮毂驱动器”,2013年第三次国际电动驱动器生产会议(EDPC),德国,纽伯格,2013年10月:IEEE:IEEE:IEEE,IEEE,IEEE,IEEE,PP。226,pp。272–288,3月2013,doi:10.1016/j.jpowsour.2012.10.060。[10] G. L. Plett,电池管理系统:电池建模。第1卷。波士顿:伦敦:Artech