《世界经济展望》预测每年出版两次,涵盖范围广泛,既包括国家,也包括经济变量,本文仅分析其中的一部分。评估针对的是七个主要工业国(G-7)和发展中国家区域总量的主要经济变量的短期预测准确性。本文重点关注预测的价值,这遵循了本文作者(Artis,1988)先前研究的先例,该研究本身以 Kenen 和 Schwarz(1986)的先前分析为基础,随后由 Barrionuevo(1993)更新和补充。对预测的事后分析需要注意两点。首先,对于许多评论家来说,《世界经济展望》的主要价值可能在于它对形势的分析、对世界经济形势的诊断以及对世界政策制定者可用选项的评估,而不是其短期预测的细节。第二,从加强全球经济政策制定和长期绩效的角度来看,IMF 的中期预测和情景分析可能比短期预测更为重要。然而,IMF 分析的质量仍然不容乐观。
生成对抗网(GAN)[4]被提议为计算机视觉领域中的生成建模框架。gan从训练数据样本中学习了概率分布,因此从Random Noises生成了新图像。此“学习和生成”机制建立在对手上,一个分类器作为判别模型,以确定是否直接从数据中采样图像还是由发电机生成,也是另一个具有从随机噪声生成图像的代理组件。损失功能鼓励发电机使歧视器将生成的图像分类为实际数据。正如CS231N讲座中所讨论的那样,由于生成模型的本质是检测现有数据中的概率密度,然后对Vanilla Gan及其变体产生,因此这些gan犯罪者的最终输出的最终输出被模型为输入图像的可能性,是从数据中采样的实际图像,而不是生成的。这在以前的工作中被证明是有效的。但是,我们可以考虑其他方法,其中之一是Wasserstein-Gan(Wgan),它不训练歧视者(评论家)作为分类器输出
摘要:针对无人战斗机空战中的机动决策问题,本文提出了一种基于深度强化学习的无人战斗机自主机动决策方法。首先,建立敌我双方无人战斗机飞行机动模型及机动库。然后,考虑到无人战斗机俯仰角不同时各动作不同的状态转换效果,将俯仰角等10个状态变量作为状态空间。结合空战态势威胁评估指数模型,设计内部奖励与稀疏奖励相结合的两层奖励机制作为强化学习的评估依据。然后,根据异步优势演员-评论家(A3C)算法,构建全连接层的神经网络模型。通过多线程的方式,UCAV与环境不断交互学习,对模型进行训练,逐步学习到最优的空战机动对抗策略,并指导UCAV进行行动选择。该算法通过多线程异步学习,降低了样本间的相关性。最后,在三种不同的空战场景中验证了该方法的有效性和可行性。
从人类反馈中学习(RLHF)已成为一种至关重要的方法,可以通过诸如近端政策优化(PPO),直接偏好优化(DPO)等方法来使大型语言模型与人类偏好相结合,见证了快速的算法进化,增强了Oneforce One-Out Out-Out Out Ont-Out(Rloo)(RLOO),Remax,Remax,Remax和Group Oppers Policy Optimation(GRPO)(GRP)(GRPO)。我们提出了增强++,这是经典增强算法的增强变体,该变体融合了PPO中的关键优化技术,同时消除了对评论家网络的需求。增强++实现了三个主要目标:(1)简单性(2)增强的训练稳定性,以及(3)减少了计算开销。通过广泛的经验评估,我们证明,与GRPO相比,增强++在保持可比性能的同时,具有比PPO更高的计算效率表现出卓越的稳定性。该实现可在https://github.com/openrlhf/openrlhf上获得。
线品牌。认可包括:152个克鲁斯评论家奖; 23美国今日美国10大读者选择奖; 23 Cruiseline.com奖;以及Conde Nast Traveler的10个奖项 - 被评为邮轮,价值,服务,岸边旅行,行程,家族友善,私人岛屿,机上娱乐等方面的最佳行业。我们还在Newsweek的ʈUVWUDQNLQJ RI美国最负责任的公司中得到认可,并且是Corporate Pary Magazine杂志的100名最佳企业公民之一。福布斯媒体连续第二年将我们视为美国最好的大型雇主之一,我们连续第三年从人权运动中获得了100分。•我们欢迎我们的公司和执行领导团队,主要道德和&rpsoldqfh2ʊfhud qhzo \ iruphg srvlwlrq致力于进一步发展整个公司的道德和合规计划。董事会还成立了一个新的合规委员会来监督道德与合规计划。承诺
摘要:本文提出了一种分层深度强化学习 (DRL) 方法,用于智能家电和分布式能源 (DER)(包括储能系统 (ESS) 和电动汽车 (EV))的能源消耗调度。与基于离散动作空间的 Q 学习算法相比,该方法的新颖之处在于,使用基于参与者-评论家的 DRL 方法在连续动作空间中调度家用电器和 DER 的能源消耗。为此,提出了一个两级 DRL 框架,其中根据消费者偏好的家电调度和舒适度在第一级调度家用电器,而使用第一级的最优解以及消费者环境特征在第二级计算 ESS 和 EV 的充电和放电计划。在分时定价下,在一个有空调、洗衣机、屋顶太阳能光伏系统、ESS 和 EV 的单个家庭中进行了模拟研究。不同天气条件、工作日/周末和电动汽车驾驶模式下的数值示例证实了所提出方法在电力总成本、储能系统和电动汽车的能量状态以及消费者偏好方面的有效性。
摘要:在机器人文献中,最佳跟踪问题通过使用各种鲁棒和自适应控制方法来解决。然而,这些方案与实施限制有关,例如在具有完整或部分基于模型的控制结构的不确定动态环境中的适用性、离散时间环境中的复杂性和完整性以及复杂耦合动态系统中的可扩展性。开发了一种在线自适应学习机制来解决上述限制,并为跟踪控制类问题提供通用解决方案平台。该方案使用同时线性反馈控制策略最小化跟踪误差并优化整体动态行为。采用基于值迭代过程的强化学习方法来求解底层贝尔曼最优方程。生成的控制策略以交互方式实时更新,而无需任何有关底层系统动态的信息。采用自适应评论家的方法来实时近似最佳求解值函数和相关控制策略。在模拟中说明了所提出的自适应跟踪机制在不确定的气动学习环境下控制柔性翼飞机的作用。
摘要:在机器人文献中,最佳跟踪问题通过使用各种鲁棒和自适应控制方法来解决。然而,这些方案与实施限制有关,例如在具有完整或部分基于模型的控制结构的不确定动态环境中的适用性、离散时间环境中的复杂性和完整性以及复杂耦合动态系统中的可扩展性。开发了一种在线自适应学习机制来解决上述限制,并为跟踪控制类问题提供通用的解决方案平台。该方案使用同时线性反馈控制策略最小化跟踪误差并优化整体动态行为。采用基于值迭代过程的强化学习方法来求解底层贝尔曼最优方程。生成的控制策略以交互方式实时更新,而无需任何有关底层系统动态的信息。采用自适应评论家的方法实时逼近最优解值函数和相关控制策略。在仿真中说明了所提出的自适应跟踪机制,以在不确定的气动学习环境下控制柔性翼飞机。
摘要:插电式混合动力汽车(PHEV)配备多个动力源,为满足驾驶员的动力需求提供了额外的自由度,因此通过能量管理策略(EMS)合理分配各动力源的动力需求,使各动力源工作在效率区,对提高燃油经济性至关重要。本文提出一种基于软演员-评论家(SAC)算法和自动熵调节的无模型EMS,以平衡能量效率的优化和驾驶循环的适应性。将最大熵框架引入基于深度强化学习的能量管理,以提高探索内燃机(ICE)和电动机(EM)效率区间的性能。具体而言,自动熵调节框架提高了对驾驶循环的适应性。此外,通过从实车采集的数据进行了仿真验证。结果表明,引入自动熵调节可以有效提高车辆等效燃油经济性。与传统EMS相比,该EMS可节省4.37%的能源,并且能够适应不同的驾驶循环,并能将电池的荷电状态保持在参考值。
作者感谢以下个人对该项目的贡献:MD,MPH,AHRQ医疗官员Justin Mills;蒂娜·范(Tina Fan),医学博士,MPH,曾任副科学总监和医学博士Tracy Wolff,MPH,AHRQ科学总监,美国预防服务工作组(USPSTF)计划; USPSTF的现任和前任成员;犹他大学的外部同伴评论家南希·罗斯(Nancy Rose)医学博士;哈佛大学的Jorge Chavarro医学博士,SCD;以及医学博士Kimberly Gregory,MPH,Cedars-Sinai Medical Center;联邦合作伙伴审查员(国立卫生研究院疾病控制与预防中心); RTI国际 - 北卡罗来纳州EPC工作人员:Christiane Voisin,MSLS,研究图书馆员; Roberta Wines,MPH和Carol Woodell,BSPH,现任和前EPC计划经理; Nila Sathe,MA,MLIS,质量保证;马萨诸塞州沙龙·巴雷尔(Sharon Barrell),编辑;和Teyonna Downing,出版物专家。