•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
亨廷顿病 (HD) 是一种渐进性、致命性、遗传性神经退行性疾病,通常在成人时期发病。亨廷顿病是由 HTT 基因第一个编码区 CAG 重复扩增引起的,这会导致大脑中亨廷顿蛋白异常积聚。人们认为,亨廷顿病的症状是由亨廷顿蛋白沉积物的渐进性积聚引起的。亨廷顿病以常染色体显性模式遗传,这意味着两个 HTT 等位基因中只需有一个扩增即可发病。患有亨廷顿病的父母有 50% 的机会将扩增的 CAG 区域遗传给他们的每个孩子。通过 PCR 和片段大小测定进行的亨廷顿病检测会分析 HTT 基因的 CAG 重复区域以测量重复次数。重复次数可以判断一个人是否有患亨廷顿病的风险。了解一个人的重复次数可以洞察这个人未来的情况、其他家庭成员是否可能有患病风险以及这个人可能生育的孩子的风险。
2019 年 6 月 23 日至 2020 年 3 月 22 日,在 Wah Cantt 第三医院接受脑膜炎检查。材料和方法:通过非概率目的抽样,共纳入 173 名患者。我们的研究纳入了年龄在 2 至 70 岁之间、性别不限且根据临床表现疑似患有脑膜炎的患者。本研究排除了禁用增强 MRI 和腰椎穿刺的患者、确诊为脑膜炎的患者和不同意接受检查的患者。所有患者均以 0.2 毫升/秒的速度接受静脉注射造影剂钆。钆后 T1W 和钆后 FLAIR 图像由顾问放射科医生获取和评估。将发现记录在规定的表格上。对患者进行随访并从实验室收集腰椎穿刺结果。结果:平均年龄为 26.4±23.5 岁,范围从 2 岁至 70 岁。 173 名患者中,98 名(56.6%)为男性,75 名(43.4%)为女性。临床表现如下:喂养不良、易怒和嗜睡 86 人(49.7%),头痛 137 人(79.2%),恶心/呕吐 125 人(72.3%),颈部僵硬 89 人(51.4%),意识水平改变 132 人(76.3%),癫痫发作 78 人(45.1%)和局部神经功能障碍 45 人(26%)。以腰椎穿刺金标准为诊断标准,增强 MRI FLAIR 诊断脑膜炎的灵敏度为 91%,特异性为 85%,PPV 为 87.6%,NPV 为 89.4%,诊断准确率为 88.4%。以腰椎穿刺金标准为标准,增强 MRI T1W 在脑膜炎诊断中的诊断准确率显示敏感性 60.2%、特异性 77.5%、PPV 75.6%、NPV 62.6% 和诊断准确率 68.2%。结论:与增强 T1W 序列相比,增强 FLAIR 序列在检测脑膜增强方面具有更高的敏感性和特异性。因此,对于所有怀疑患有脑膜炎的患者,应将增强 FLAIR 序列作为常规序列添加到 MRI 脑部方案中。
方法论:RNA与全血或骨髓分离并反转录。所得的cDNA经过多重PCR扩增,旨在扩增P190,P210或P230 BCR-ABL1融合转录本,涉及ABL1外显子2。ABL1参考基因也被放大以进行标本质量控制并确保RNA的完整性。PCR产物通过毛细管电泳解决,并评估存在表明阳性结果的扩增子的存在。阳性普通P210或P190结果将触发定量P210或P190测试,以提供定量水平作为监测治疗反应的诊断基线。p210的成绩单水平报告为国际量表百分比(%is)。P190转录水平报告为归一化拷贝数(NCN)。这些定量结果被整合到最终报告中。如果初始定性测试为阴性,或者检测到罕见的P230,则不会进行反射测试。
分化的甲状腺癌(DTC)(1)包括乳头状甲状腺癌(PTC),卵泡甲状腺癌(FTC)及其变异亚型(2),是最常见的内分泌恶性肿瘤,并且最近几年的发病率迅速增加。DTC通常具有良好的预后,碘131治疗和甲状腺抑制剂已被证明对10年生存率的患者有益,范围为80%至95%(3,4)。然而,大约5%-20%的病例可能由于基因突变引起的肿瘤生物学变异,导致不同的亚型和预后不良,这可能与高度浸润性肿瘤的生物学特征有关(5)。因此,甲状腺结节的鉴别诊断仍然很明显。对比增强超声(CEU)可以实时评估组织的微循环灌注(6),提供准确可靠的数据,并且可以避免由个体差异引起的诊断错误(7)。由于甲状腺正常组织中的微容器的丰度,它显示出造影剂后的快速和均匀增强。然而,甲状腺结节具有不同的血管生成模式,并且CEUS上的表现可能不同(8)。先前的研究报道了甲状腺结节的CEUS特征,但是,大多数是基于结节内部(9-11),而CEUS上甲状腺结节的增强模式仍然没有足够的能力来诊断甲状腺癌(12)。到目前为止,只有一项研究重点介绍了结节周围区的CEU特征(13)。这项研究的目的是通过研究甲状腺结节的内部和外围区域的定性和定量参数来评估CEU在DTC的鉴别诊断中的价值。
人工智能 (AI) 在医疗行业内患者护理和诊断流程的变革中发挥着越来越重要的作用。本文探讨了机器学习、自然语言处理和计算机视觉等 AI 技术对提高诊断准确性、简化患者护理和增强临床工作流程的变革性影响。通过分析最近的进展和案例研究,本文重点介绍了 AI 驱动的工具如何支持早期疾病检测、个性化治疗计划和患者数据的有效管理。它还探讨了与 AI 实施相关的潜在挑战和道德考虑,例如数据隐私和算法偏差。本文最后概述了 AI 在医疗保健领域的未来方向,强调需要继续研究、跨学科合作和监管框架,以最大限度地发挥 AI 的优势,同时解决潜在风险。通过这一探索,本文旨在全面了解 AI 在推进患者护理和诊断实践方面的作用,最终有助于建立更有效、更公平的医疗保健系统。
急性淋巴细胞类别的患病率更高,到达儿童的80%,而成年人中只有20%的病例,其主要特征是高细胞增殖,分化程度较小(Moreira等,2018);根据世界卫生组织(WHO)的说法,它分为两个先驱:B和T,它指的是淋巴细胞谱系的存在,存在淋巴细胞的存在,B是负责大多数情况的b和t,允许终身性白血病与终身性白血病有关(PUI; Robson; Robson; Robson; Look; look; silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; Silva; 2009年》。在编年史中,受影响的细胞也是淋巴细胞B,但是达到的年龄组是最高的(Barros,2009年)及其异常,突出了三体性,易位,缺失,缺失和束缚,揭示了细胞遗传学对诊断的重要性(Chauffaille,2005年)。
