摘要:研究了激光功率、扫描速度和激光间距三个重要工艺参数对直接能量沉积 718 合金试件沉积层几何形状、微观结构和偏析特性的影响。研究发现,激光功率和激光间距显著影响沉积层的宽度和深度,而扫描速度影响沉积层高度。比能条件的增加(在 0.5 J/mm 2 和 1.0 J/mm 2 之间)增加了沉积层的总面积,产生了不同的晶粒形貌和析出行为,并对其进行了全面分析。沉积层包含三个不同的区域,即顶部、中部和底部区域,根据局部凝固条件变化而形成的不同微观结构特征进行分类。富铌共晶优先偏析在沉积物顶部区域(面积分数为 5.4–9.6%,A f ),该区域主要由等轴晶粒结构组成,而中部区域(面积分数为 1.5–5.7%,A f )和底部区域(面积分数为 2.6–4.5%,A f )则观察到柱状枝晶形态。高扫描速度更有效地降低沉积物顶部和中部区域的富铌相面积分数。观察到<100>晶体方向是柱状晶粒的首选生长方向,而等轴晶粒具有随机取向。
摘要。本文通过研究人工智能在混凝土设计中的应用来解决对可持续基础设施的迫切需求,特别强调预测单轴抗压强度 (UCS) 以减轻环境影响。混凝土是一种基本的建筑材料,由于其巨大的碳足迹,是环境恶化的主要原因。该研究的重点是利用人工神经网络 (ANN) 的潜力来预测传统建筑混凝土中的 UCS,这种混凝土在全球建筑实践中得到广泛应用。这一重点源于人们认识到这些混凝土类型对环境有重大影响,既影响碳足迹,又影响生态系统。研究方法包括分析一个数据集,该数据集包含 300 个立方体混凝土试件,尺寸为 15 厘米 × 15 厘米 × 15 厘米,按 70:30 的比例分为训练集和测试集。除了 ANN 模型外,还采用了各种机器学习分类器(包括支持向量机和决策树)进行比较。结果表明,基于 ANN 的预测模型优于替代分类器,具有高准确率和最小误差值,从而证实了其在估计 UCS 值方面的可靠性。这些发现凸显了整合人工智能技术以提高建筑实践的可持续性和减轻与混凝土使用相关的环境影响的潜力。通过采用 ANN 预测模型等创新方法,建筑行业可以为环境保护和可持续发展做出重大贡献。关键词:人工智能;混凝土;施工管理;环境影响;可持续结构 1. 简介
目录 1.0 简介 1 2.0 背景 12 2.1 识别关键疲劳敏感细节 12 2.2 断裂行为类型 15 2.3 断裂力学分析 16 3.0 断裂试验 35 3.1 试样制作、残余应力和材料特性 35 3.2 带结构细节的工字梁弯曲 41 3.3 带加筋壳的箱梁弯曲 45 3.4 带孔和 CCT 拉伸试样 47 4.0 试验分析 98 4.1 PD6493 计算 100 4.2 扩展裂纹的塑性极限载荷计算 111 4.3 计算施加 J 的有限元分析 112 4.4 J 估算方案 115 4.5 通过 J-R 曲线分析预测裂纹扩展121 4.6 Landes 归一化方法 125 4.7 通过裂纹张开角预测裂纹扩展 129 5.0 延性断裂模型在船舶结构中的应用指南 180 5.1 钢材和填充金属的规格 180 5.2 断裂力学试验方法 183 5.3 推荐的延性断裂模型 185 6.0 结论和进一步研究的建议 191 附录 1:HSLA-80 和 EH-36 材料的选定 J-R 曲线 附录 2:工字梁实验的实验数据 附录 3:箱梁实验的实验数据 附录 4:Cope-Hole 实验的实验数据 附录 5:样品应力强度因子计算 附录 6:工字梁和箱梁试件的极限载荷预测
摘要。本文比较了两种具有不同细节级别的数值方法,用于模拟接受单搭接剪切试验的弯曲砌体支撑。砌体柱在拱顶和拱腹处用 TRM 材料加固,TRM 材料由嵌入 10 毫米厚砂浆层的 100 毫米宽 PBO 织物组成。使用两种方法进行数值分析:非均质微建模 FE 方法和弹簧模型方法。第一种建模策略是使用商业软件 Abaqus 开发的,它涉及组成材料(即砖和砂浆接缝)的单独建模以及 PBO 织物和砂浆基质的模拟。第二种方法是专门为分析弯曲支撑而开发的,它包括采用等效法向弹簧和剪切弹簧来模拟试件的组成部分(支撑、基质和钢筋),以及钢筋和基质之间的界面。值得一提的是,这项数值研究是正在进行的实验和数值研究的一部分,该研究重点是分析弯曲脆性支撑对创新强化材料(即 FRP)粘附性能的影响,并在此扩展到采用 TRM 复合材料。由于缺乏对 TRM 组成材料的全面实验表征,因此纺织品和砂浆基质的机械性能是根据制造商提供的可用数据推导出来的。本文介绍了数值结果,并根据模拟结束时获得的整体力-位移曲线和损伤图进行了严格比较。
a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 b 威斯康星大学麦迪逊分校材料科学与工程系,美国威斯康星州麦迪逊 53706 c 威斯康星大学麦迪逊分校格兰杰工程研究所,美国威斯康星州麦迪逊 53706 ⸸ 通讯作者 摘要 拓扑优化 (TO) 与增材制造 (AM) 的结合有可能彻底改变现代设计和制造。然而,制造优化设计的实例很少,而经过实验测试的设计实例就更少了。缺乏验证再加上 AM 工艺对材料性能的影响,使我们对工艺-微观结构-性能关系的理解存在差距,而这对于开发整体设计优化框架至关重要。在这项工作中,使用定向能量沉积 (DED) 和选择性激光熔化 (SLM) 方法对功能设计进行了拓扑优化和制造。这是首次在 TO 背景下直接比较这些 AM 方法。在单轴位移控制拉伸载荷下,研究了 SS316L 和优化部件在制造和热处理条件下的机械性能,并与有限元建模 (FEM) 预测进行了比较。优化样品在试件中提供了压缩和拉伸载荷区域。实验结果表明 FEM 预测较为保守。微观结构分析表明,这种差异是由于增材制造过程中形成的细化微观结构,可增强高应力区域的材料强度。此外,由于晶粒尺寸更细化和位错结构更密集,SLM 样品表现出比 DED 样品更高的屈服强度。TO 结果对 AM 方法、后处理条件和机械性能差异很敏感。因此,通过结合微观结构特征来考虑制造部件中的局部微观结构变化,可以最好地优化用于 AM 框架的 TO。
如今,增材制造 (AM) 技术被视为先进工艺,通过该技术可以逐层生产形状复杂的部件。值得注意的是,据报道,在这些技术中,在生产角度大于 45° 的部件时,不需要支撑。而当角度低于此角度时,需要有支撑来抵消重涂刀片的力并散热。事实上,在这些角度下,存在脱落导致部件故障的风险,并会增加下皮表面的严重熔渣形成(高粗糙度)。然而,通过优化一些参数,可以减小这个角度的值。因此,本论文的主题是找到 IN718 合金的优化下皮参数,以提高倾斜试件悬垂表面的质量。这项工作从对下皮参数的深入文献研究开始。我们发现,最关键的参数是悬垂角度、激光功率、激光速度、描边距离以及使用下皮参数处理的层数。基于所获得的知识,在 Prima Industrie SpA 使用 Print Sharp 250 机器对参数进行了优化。实验程序包括三个“实验设计”(DoE),第一个实验进行了重复性测试。第一个 DoE 是通过对倾斜 30°、35° 和 40° 的样品进行 3 3 因子实验进行的,修改了激光功率、激光速度和描边距离。下皮表面的粗糙度分析被用作关键性能指标。结果,找到了下皮粗糙度低于 21 µm 的最佳八组参数(角度为 35° 和 40°)(文献中 Inconel 718 在 45° 时的值为 19 µm)。为了验证结果的准确性,我们通过使用相同的参数打印和分析一些样本进行了重复性测试。检测到的变异性始终低于 5%,证实了结果的一致性。第二个 DoE 旨在使用图像分析来评估孔隙率,其中样本被切割、抛光,然后使用光学显微镜进行分析。对于最佳参数组,样本的密度始终高于 99.2%。因此,预计下皮区域的机械特性不会发生变化。最后,进行了第三个 DoE 以