图像包含大量冗余信息,使其具有挑战性地在大规模上从它们中有效地了解它们。最近的工作通过在视觉语言构想学习期间掩盖图像贴片来解决这个问题[15,33,36,70]。一种简单的方法是随机放下大部分斑块,通过降低每个训练迭代中的计算成本和记忆使用量,从而更有效地培训训练[36]。替代策略是掩盖语义相关的贴片[15,33,70],例如属于同一对象的贴片。这迫使学习的模型预测从上下文中描述缺少场景结构的单词,从而改善了学识渊博的表示。但是,这种方法需要一种单独的机制来将语义重新贴定的补丁分组在一起,这为学习过程增加了相当大的复杂性,并且计算上很昂贵。我们提出了一种简单的掩盖策略,用于避免这些缺点的多模式对比学习。在训练期间,我们掩盖了斑块的随机簇(图1)。对于此聚类,我们将Patches的原始RGB值用作特征表示。我们的方法利用了一个事实,即视觉相似性的简单度量通常可以限制相干的视觉结构,例如对象部分[18,53],
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
通过将自然语言纳入附加指导来实现单眼深度估计的最新进展。尽管产生了令人印象深刻的结果,但语言先验的影响,尤其是在发生和鲁棒性方面,仍未得到探索。在此过程中,我们通过量化此之前的影响来解决这一差距,并引入方法以在各种环境中基准其有效性。我们生成“低级”句子,传达以对象为中心的三维空间关系,将它们纳入其他语言先验,并评估其对深度估计的下游影响。我们的关键发现是,当前语言引导的深度估计仅通过场景级别的描述和违反直觉的效果最佳地发挥作用。尽管利用了其他数据,但这些方法对于对抗性攻击并随着分配变化的增加而对性攻击和绩效下降并不强大。fi-nally,为了为未来的研究提供基础,我们识别出失败点,并提供见解以更好地理解这些缺点。使用语言进行深度估算的越来越多的方法,我们的发现突出了需要仔细考虑在现实世界中有效部署的机会和陷阱。1
人类语言最引人注目的特征之一是它们的极端变化。更加惊人的是,在统治其形式和功能的强烈代表性和认知规律的明显变化背后的存在:语言普遍性。我们在这里讨论我们小组的一些最新工作,其中大规模,数据密集型计算建模技术用于解决有关语言规律性的基本语言问题。在单词顺序区域中,我们在此处报告工作,这些工作利用大量单语和平行语料库数据来开发名词短语(通用20)和一般结构最小化原则的内部结构的计算模型。在事件持续时间的领域,我们报告的工作利用了深厚的相似性和表面差异来开发真正的跨语言自然语言处理工具。
摘要在线第二语言教学近年来蓬勃发展,在技术能力和COVID-19大流行导致的教学方式的强迫变化的帮助下。这种转变强调了互动在在线教育学中的关键作用。研究表明,增加学生与讲师之间互动的机会增加对于培养第二语言获取(SLA)至关重要。但是,很少有研究量化在线语言教学中的不同类型的相互作用的产生,尤其是在经验丰富的讲师中。本研究利用互动主义框架对在线西班牙语课程中的互动进行定量分析,并根据互动启动类型进行分类:指导者提出的参与(IPP),未提出的口头参与(UOP),未提及的文本参与(UTP),即聊天(即,聊天的时间段)(即,均一次的范围)(即及时的范围),并在展示范围(ever),并在展示范围(即及格)。这些转弯)。数据包括在英国一所远程学习大学中跨越熟练的LEV ELS和课程类型的同步L2西班牙语教学的视频记录。课程类型包括语法研讨会和考试准备。结果表明,在线语言课程中的互动模式受熟练程度和课程类型的影响。较低的熟练度学生更频繁地从事互动程序,而参与扩展话语的能力取决于Spe cific活动/课程类型。这项研究有助于解决除英语(Lote)以外的LAN Guages的互动和语言教学研究的缺乏。
在过去的十年中,言语和语言技术已经看到了前所未有的“成功”。在既定基准中衡量的广泛应用的性能显然稳步增长。许多工具通过在消费者和商业计算中的集成而广泛采用,语音和语言技术已成为围绕“人工智能”的兴趣(和炒作)的焦点。结果,研究人员长期以来以某种形式知道的技术,例如自动语音识别(ASR),语音综合(TTS)和(大型)语言模型(LLMS)在新颖的社会环境中被解释(和开发)。上下文中的这些变化,而不是(仅)技术本身,提出了许多埃斯特,技术和法律问题,例如:
Qi Huang 1 Yangrui Chen 1 Zhi Zhang 1 Yanghua Peng 1 Xiang Li 1 Cong Xie 1 Shibiao Nong 1 Yulu Jia 1 Sun He 1 Hongmin Chen 1 Zhihao Bai 1 Qi Hou 1 Shipeng Yan 1 Ding Zhou 1 Yiyao Sheng 1 Zhuo Jiang 1 Haohan Xu 1 Haoran Wei 1 Zhang Zhang 1 Pengfei Nie 1 Leqi Zou 1 Sida Zhao 1 Liang Xiang 1 Zherui Liu 1 Zhe Li 1 Xiaoying Jia 1 Jianxi Ye 1 Xin Jin 2 , Xin Liu 1
我们利用大型语言模型(LLM)进行零射击语义视听导航(SAVN)。现有的方法利用广泛的培训演示来巩固执行学习,但达到了相对较低的成功率和缺乏可普遍性。Auditary信号的间歇性质进一步构成了其他障碍,以减少目标信息。为了应对这一挑战,我们提出了Reflyception and I Maginative L Anguage A Gent(Rila)。通过采用多模式来处理SENSORY数据,我们指示基于LLM的规划师积极地展示环境。在探索过程中,我们的代理人对不准确的感知描述进行了适应性评估和驳回。此外,我们引入了辅助LLM的助手,以通过映射房间的布局并提供战略见解来增强全球环境综合。通过全面的实验和分析,我们表明我们的方法在没有环境和互补语义信息的培训演示的情况下优于相关的基线。
