在过去的十年中,言语和语言技术已经看到了前所未有的“成功”。在既定基准中衡量的广泛应用的性能显然稳步增长。许多工具通过在消费者和商业计算中的集成而广泛采用,语音和语言技术已成为围绕“人工智能”的兴趣(和炒作)的焦点。结果,研究人员长期以来以某种形式知道的技术,例如自动语音识别(ASR),语音综合(TTS)和(大型)语言模型(LLMS)在新颖的社会环境中被解释(和开发)。上下文中的这些变化,而不是(仅)技术本身,提出了许多埃斯特,技术和法律问题,例如:
大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
Qi Huang 1 Yangrui Chen 1 Zhi Zhang 1 Yanghua Peng 1 Xiang Li 1 Cong Xie 1 Shibiao Nong 1 Yulu Jia 1 Sun He 1 Hongmin Chen 1 Zhihao Bai 1 Qi Hou 1 Shipeng Yan 1 Ding Zhou 1 Yiyao Sheng 1 Zhuo Jiang 1 Haohan Xu 1 Haoran Wei 1 Zhang Zhang 1 Pengfei Nie 1 Leqi Zou 1 Sida Zhao 1 Liang Xiang 1 Zherui Liu 1 Zhe Li 1 Xiaoying Jia 1 Jianxi Ye 1 Xin Jin 2 , Xin Liu 1
欧盟自 2019 年以来一直在实施其数据战略。1 面向工业的数据单一市场的一个关键组成部分是建立“可互操作的数据空间”以“汇集关键行业的欧洲数据”,在这个市场中“数据可以在欧盟内部和跨行业流动,造福所有人”、“欧洲规则 […] 得到充分尊重”并且“数据访问和使用规则公平、实用和明确”。欧盟委员会(2022 年)描述了一个初步的、相当粗略的概念,包括如何建立和运营这些数据空间,包括相关立法(另见 Nagel 和 Lycklama,2021 年)。该文件还列出了一些针对制造业、交通、医疗、金融、能源、农业和技能等行业的“官方”欧盟数据空间。由数字欧洲计划 (DEP) 2 中的采购合同资助的欧洲通用语言数据空间 (LDS) 就是这些官方欧盟数据空间之一。 3
摘要在线第二语言教学近年来蓬勃发展,在技术能力和COVID-19大流行导致的教学方式的强迫变化的帮助下。这种转变强调了互动在在线教育学中的关键作用。研究表明,增加学生与讲师之间互动的机会增加对于培养第二语言获取(SLA)至关重要。但是,很少有研究量化在线语言教学中的不同类型的相互作用的产生,尤其是在经验丰富的讲师中。本研究利用互动主义框架对在线西班牙语课程中的互动进行定量分析,并根据互动启动类型进行分类:指导者提出的参与(IPP),未提出的口头参与(UOP),未提及的文本参与(UTP),即聊天(即,聊天的时间段)(即,均一次的范围)(即及时的范围),并在展示范围(ever),并在展示范围(即及格)。这些转弯)。数据包括在英国一所远程学习大学中跨越熟练的LEV ELS和课程类型的同步L2西班牙语教学的视频记录。课程类型包括语法研讨会和考试准备。结果表明,在线语言课程中的互动模式受熟练程度和课程类型的影响。较低的熟练度学生更频繁地从事互动程序,而参与扩展话语的能力取决于Spe cific活动/课程类型。这项研究有助于解决除英语(Lote)以外的LAN Guages的互动和语言教学研究的缺乏。
人类语言最引人注目的特征之一是它们的极端变化。更加惊人的是,在统治其形式和功能的强烈代表性和认知规律的明显变化背后的存在:语言普遍性。我们在这里讨论我们小组的一些最新工作,其中大规模,数据密集型计算建模技术用于解决有关语言规律性的基本语言问题。在单词顺序区域中,我们在此处报告工作,这些工作利用大量单语和平行语料库数据来开发名词短语(通用20)和一般结构最小化原则的内部结构的计算模型。在事件持续时间的领域,我们报告的工作利用了深厚的相似性和表面差异来开发真正的跨语言自然语言处理工具。
摘要。我们的生活现在围绕社会交流,并且由于阿拉伯文本非常复杂并且包含了许多方言,因此在阿拉伯社交媒体上很难识别出令人反感的语言。本文研究了机器学习模型的实施。使用了选择的分类器,包括决策树,支持向量机,随机森林和逻辑回归。在实验中使用了包含4505个推文的“ ARCYBC”数据集,以评估机器学习模型的性能。根据实验的结果,使用更多运行可以增强机器学习模型的性能,尤其是在精度和召回率方面。随着更多的运行,决策树(DT)和随机森林(RF)分类器显示出更好的回忆和精度,但是DT分类器显示出更好的精度。
通过将自然语言纳入附加指导来实现单眼深度估计的最新进展。尽管产生了令人印象深刻的结果,但语言先验的影响,尤其是在发生和鲁棒性方面,仍未得到探索。在此过程中,我们通过量化此之前的影响来解决这一差距,并引入方法以在各种环境中基准其有效性。我们生成“低级”句子,传达以对象为中心的三维空间关系,将它们纳入其他语言先验,并评估其对深度估计的下游影响。我们的关键发现是,当前语言引导的深度估计仅通过场景级别的描述和违反直觉的效果最佳地发挥作用。尽管利用了其他数据,但这些方法对于对抗性攻击并随着分配变化的增加而对性攻击和绩效下降并不强大。fi-nally,为了为未来的研究提供基础,我们识别出失败点,并提供见解以更好地理解这些缺点。使用语言进行深度估算的越来越多的方法,我们的发现突出了需要仔细考虑在现实世界中有效部署的机会和陷阱。1
