大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
摘要。在过去的十年中,美国的电子健康记录(EHR)数据数量激增,归因于《 2009年健康信息技术经济和临床健康法》(HITECH)2009年的有利政策环境和2016年21世纪治疗法案。医生在自由形式的文本中捕获了患者评估,诊断和治疗的临床笔记,他们花费大量时间进入他们。手动编写临床笔记可能需要大量时间,增加患者的等待时间,并可能延迟诊断。大型语言模型(LLM),例如GPT-3具有生成与人类写作的新闻文章的能力。我们调查了对临床笔记生成中LLM的促进工程促进工程的用法(COT)。在提示中,我们将疾病国际分类(ICD)代码和基本患者信息以及类似的临床病例示例纳入了研究,以研究LLMS如何有效地制定临床注释。,我们使用GPT-4作为LLM对Codiesp测试数据集的六个临床病例进行了COT提示技术,结果表明,它的表现优于标准的零照片提示。
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
解决复杂的,暂时扩展的任务是控制学习(RL)的长期问题。我们假设解决此类问题的一个关键要素是组成性的概念。具有学习概念和子技能的能力,这些概念和子技能可以构成解决更长的任务的能力,即层次RL,我们可以获取时间扩展的行为。但是,为层次RL获取有效但一般的抽象是极具挑战性的。在本文中,我们建议将语言用作抽象,因为它提供了独特的组合结构,实现了快速学习和组合概括,同时保持了极大的灵活性,使其适合各种问题。我们的方法学习了一个遵循指令的低级政策和高级政策,该政策可以在本质上重复跨任务的抽象,从而允许代理人使用结构化语言进行推理。为了研究组成任务学习,我们介绍了使用Mujoco物理引擎和CLEVR引擎构建的开源对象相互作用环境。我们发现,使用我们的方法,代理可以学会求解各种暂时扩展的任务,例如对象排序和多对象重排,包括来自原始像素观测值。我们的分析表明,语言的组成性质对于学习各种亚技能和系统地推广到新的亚技能至关重要,与使用相同监督的非复合抽象相比,语言的构成性质至关重要。2
简介 AI文案和AI改写是利用人工智能(AI)创建和处理文本内容的过程[1]。这些过程包括使用机器学习算法和神经网络来生成可用于文案、营销、新闻、宣传、博客、教育等各个领域的文本 [2]。在技术和营销快速发展的背景下,人工智能文案和人工智能改写变得越来越重要,因为它们可以显著加快内容创作过程并提高其质量 [3]。现代人工智能技术使我们能够创建质量不逊于人类编写的文本的文本。这为商业开辟了新的机会,因为它降低了内容创作的成本并提高了其有效性[4]。然而,尽管人工智能在文案撰写和改写中的应用有诸多优势,但也引发了许多与所创作文本的语言特征有关的问题,以及对文案撰写的新挑战 [1]。本研究旨在分析人工智能生成文本的语言特征并确定文案写作面临的新挑战。在
金融市场瞬息万变,实时更新和分析至关重要。这些市场容易受到全球事件和现象的影响,例如贸易战、内乱、创新和科学发现。金融新闻可从多种来源获得,包括在线和离线。这里的在线来源是指可以通过互联网获取的来源,这里的离线来源是指通过其他媒体传播的来源。离线来源包括通过报纸和电视获得的新闻和见解。对于像股票市场一样敏感的金融市场来说,通过报纸获得的新闻已经过时了。电视上的新闻是现场直播的,但这种新闻无法轻松分析。在相关性和分析的简易性方面,在线资源比离线资源更胜一筹。
欧盟自 2019 年以来一直在实施其数据战略。1 面向工业的数据单一市场的一个关键组成部分是建立“可互操作的数据空间”以“汇集关键行业的欧洲数据”,在这个市场中“数据可以在欧盟内部和跨行业流动,造福所有人”、“欧洲规则 […] 得到充分尊重”并且“数据访问和使用规则公平、实用和明确”。欧盟委员会(2022 年)描述了一个初步的、相当粗略的概念,包括如何建立和运营这些数据空间,包括相关立法(另见 Nagel 和 Lycklama,2021 年)。该文件还列出了一些针对制造业、交通、医疗、金融、能源、农业和技能等行业的“官方”欧盟数据空间。由数字欧洲计划 (DEP) 2 中的采购合同资助的欧洲通用语言数据空间 (LDS) 就是这些官方欧盟数据空间之一。 3
在线对话支持——聊天——是增长最快的客户服务渠道,是千禧一代获得客户服务的首选方式。如今,通过该渠道支持国际客户主要是通过使用讲不同语言的人工代理——一种稀缺且昂贵的资源。语言技术(机器翻译和对话系统)在过去几年中取得了巨大进步,使其成为多语言客户服务的有吸引力的工具。然而,当前的系统仍然过于脆弱和不切实际:首先,它们需要太多数据和计算能力,在标记数据稀缺的领域或语言中失败;其次,它们不捕获上下文信息(例如,当前的机器翻译系统以逐句为基础工作,忽略对话上下文);第三,全自动系统缺乏人类同理心,在意外情况下会失败,导致客户满意度低
科学进步在相应的语言发展中反映了。显微镜,望远镜,断层扫描和其他传感设备打开的远景导致了新实体和过程的命名。量子理论导致了经典原子图的统计,并且在纠结的过程和非二元逻辑方面说话。量子理论还导致了与观察者定义和观察者的定义有关的深刻问题。这是检查心灵之谜的一条途径。其他路径源于古老的哲学传统和过去世纪的心理理论。在科学话语中描述思维的语言并没有与物理科学的发展保持同步。主流讨论已从早期的二元模型的共同信念模型转变为一种基于平行计算机式大脑过程的复杂性的思维的出现。有时以分离和相互联系的方式表达的确定性和自主权的两个旧范式以各种形式出现。其中两个是有利的,取决于研究领域和现行时尚。尽管量子理论为物理科学提供了70年的基础,但直到最近才考虑了整体,类似大脑的量子样操作。这种新鲜的外观是由各种人工智能(AI)项目以及新的分析和实验发现所带来的挫折引起的。机械科学的兴起看到了概念 -人们认识到,诸如“驱动器”之类的刺激反应结构通常不足以提供解释。并且有人援引“ e o o o o o t”类别来解释自治行为。卡尔·普里布拉姆(Karl Pribram)的大脑经典语言(1971)描述了用于描述大脑行为的标准语言和逻辑类别中的许多悖论。自写了这本书以来,已经尝试并发现许多新方法要解决这些悖论。用来描述大脑运作的语言是按照年龄的主要科学范式建模的。
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。