1人类遗传学系,麦吉尔大学,蒙特利尔,QC H3A 0C7,加拿大2个基因组医学中心,京都大学研究生院,京都大学606-8507,日本3数字技术研究中心,加拿大国家研究委员会,渥太华,渥太华,K1K 4P7,加拿大4P7,Indure prantublorator and Inderipic suplorator and Indiator lip lip lip lip lip lip。渥太华的渥太华,位于加拿大的K1H 8M5,5年生物化学系,微生物学和免疫学系和渥太华系统生物学研究所,渥太华大学,渥太华大学,K1H 8M5,加拿大6 Terrence Donnelly Donnelly Donnelly Center of Cancase ot toronto,MORONTO,MORONTO,MORONTO,MORONTO,MORONTO,MOLONTO,MOLONTO,MOLONTO,MOLONTO,MORENT,MORONT,MOLONT,MORONT,MOLONTO,MORONT,MORONTICT,M5S,M5S,M5S,M5S,M5 of Toronto, Toronto, ON M5S 3E1, Canada 8 Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada 9 Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada 10 Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa,渥太华,在加拿大的K1N 6N5上,相应的作者。数字技术研究中心,国家研究委员会,渥太华蒙特利尔路1200号,加拿大K1K 4P7。电子邮件:Miroslava.cuperlovic-culf@nrc-cnrc.gc.ca(M.C.-C。)和渥太华大学生物化学,微生物学和免疫学系,451 Smyth Rd,Ottawa,Ottawa,Ottawa,Ottawa,K1H 8M5,加拿大。 电子邮件:sbennet@uottawa.ca(S.A.L.B。) †同等贡献。 副编辑:guqiang yu电子邮件:Miroslava.cuperlovic-culf@nrc-cnrc.gc.ca(M.C.-C。)和渥太华大学生物化学,微生物学和免疫学系,451 Smyth Rd,Ottawa,Ottawa,Ottawa,Ottawa,K1H 8M5,加拿大。电子邮件:sbennet@uottawa.ca(S.A.L.B。) †同等贡献。 副编辑:guqiang yu电子邮件:sbennet@uottawa.ca(S.A.L.B。)†同等贡献。副编辑:guqiang yu
■公司简介 公司名称:系统规划研究所株式会社 代表董事:门胁仁志 总公司所在地:东京都涩谷区樱丘町18-6日本会馆 业务内容:以医疗信息、控制与空间、通信与网络、图像处理、AI等领域为中心的软件开发、系统开发、系统集成、咨询、技术开发、产品开发 URL:https://www.isp.co.jp/
(1) R. Gómez-Bombarelli, J.N.魏,D. Duvenaud,J.M.Hernandez-Lobato、B. Sanchez-Lengeling、D. Sheberla、J. Aguilera-Iparraguirre、T.D.希泽尔 R.P.亚当斯和 A.Aspuru-Guzik.,“使用数据驱动的分子连续表示进行自动化学设计”,ACS Central Science,卷。4,没有。2,第268-276,2018 年 2 月。(2) T.Guo, D.J.Lohan 和 J.T.Allisony,“使用变分自动编码器和风格迁移进行拓扑优化的间接设计表示”,AIAA 2018-0804。https://doi.org/10.2514 / 6.2018-0804,2018年。(3) S. Oh、Y. Jung、S. Kim、I. Lee 和 N. Kang,“深度生成设计:拓扑优化与生成模型的集成,”J.机械设计,卷。141,号。11, 111405, 2019.(4) 五十岚一,伊藤桂一,《人工知能(AI)技术と电磁気学を用いた最适设计[I]──トポロジー最适化──,》信学志,卷.105,没有。1. 页2022 年 33-38 日。(5) H. Sasaki 和 H. Igarashi,“深度学习加速拓扑优化”,IEEE Trans。Magn.,卷。55,没有。6,7401305,2019。(6) J. Asanuma、S. Doi 和 H. Igarashi,“通过深度学习进行迁移学习:应用于电动机拓扑优化, ” IEEE Trans.Magn., 卷。56, no.3, 7512404, 2020.(7 ) T. Aoyagi、Y. Otomo、H. Igarashi1、H. Sasaki、Y. Hidaka 和 H. Arita,“使用深度学习进行拓扑优化预测电流相关电机扭矩特性”,将在 COMPUMAG2021 上发表。(8) R.R.Selvaraju、M. Cogswell、A. Das、R. Vedantam、D. Parikh 和 D. Batra,“Grad-CAM:来自深层的视觉解释网络通过基于梯度的定位,” Proc.IEEE Int.Conf.计算机视觉 ( ICCV ),第< div> 618-626,2017 年。(9) H. Sasaki、Y. Hidaka 和 H. Igarashi,“用于电动机设计的可解释深度神经网络”,IEEE Trans。Magn.,卷57,号6,8203504,2021。(10) X.Y.Kou,G.T.Parks,和 S.T.< div> Tana,“功能优化设计
第1部分动物心理学的一般理论第1章动物心理学的历史第2章动物心理学对象第3章研究方法第4章刺激和感官第5章工具感官第6章第6章VISION第6章VISION第7章化学感官第8章《时间感知》第8章中的学习方法第1章第1章第1章使用动物学习研究的方法和设备2动物学习研究3生理学的意义。第5章学习的外部因素第6章学习的内部因素第7章分布实践和第8章过渡和干涉第9章学习曲线第10章学习部分
在一个实验中研究多个“ eme”可以帮助研究人员获得对信息从基因到蛋白质的运动的宝贵见解,以更好地了解生活的复杂性。1许多多组合组合是可能的,每个组合都具有独特的好处。具体来说,基因组学和转录组学的组合可以揭示出遗传变异及其后果的更完整的情况。虽然基因组从细胞之间保持相同,但转录组可能会变化,从而扩大研究人员的观点。2
目标:本研究旨在探索多中心数据异质性对深度学习脑转移瘤 (BM) 自动分割性能的影响,并评估增量迁移学习技术,即不遗忘学习 (LWF),在不共享原始数据的情况下提高模型通用性的有效性。材料和方法:使用了来自埃尔朗根大学医院 (UKER)、苏黎世大学医院 (USZ)、斯坦福大学、加州大学旧金山分校、纽约大学 (NYU) 和 BraTS Challenge 2023 的总共六个 BM 数据集。首先,分别针对单中心专项训练和混合多中心训练建立 DeepMedic 网络的 BM 自动分割性能。随后评估了隐私保护双边协作,其中将预训练模型共享到另一个中心以使用迁移学习 (TL) 进行进一步训练(带或不带 LWF)。结果:对于单中心训练,在各自的单中心测试数据上,BM 检测的平均 F1 分数范围从 0.625(NYU)到 0.876(UKER)。混合多中心训练显著提高了斯坦福大学和纽约大学的 F1 分数,而其他中心的提高可以忽略不计。当将 UKER 预训练模型应用于 USZ 时,在组合 UKER 和 USZ 测试数据上,LWF 获得的平均 F1 分数 (0.839) 高于朴素 TL (0.570) 和单中心训练 (0.688)。朴素 TL 提高了灵敏度和轮廓绘制精度,但损害了精度。相反,LWF 表现出值得称赞的灵敏度、精度和轮廓绘制精度。当应用于斯坦福大学时,观察到了类似的性能。结论:数据异质性(例如,不同中心的转移密度、空间分布和图像空间分辨率的变化)导致 BM 自动分割的性能不同,对模型的通用性提出了挑战。LWF 是一种很有前途的点对点隐私保护模型训练方法。
人工智能 (AI) 已成为神经病学领域的一种强大工具,对神经系统疾病的诊断和治疗产生了重大影响。最近的技术突破使我们能够获得与神经病学许多方面相关的大量信息。神经科学和人工智能有着悠久的合作历史。除了巨大的潜力之外,我们还遇到了与数据质量、道德以及将数据科学应用于医疗保健的固有困难相关的障碍。神经系统疾病由于其复杂的表现和多变性而带来了复杂的挑战。通过自动执行图像解释任务,AI 算法可以准确识别大脑结构并检测异常。这加快了诊断速度并减少了医疗专业人员的工作量。治疗优化受益于 AI 模拟,它可以模拟不同的场景并预测结果。这些 AI 系统目前可以执行生物系统的许多复杂感知和认知能力,例如物体识别和决策。此外,AI 正在迅速被用作神经科学研究的工具,改变了我们对大脑功能的理解。它能够彻底改变我们所知的医疗保健,使其成为一个人类和机器人合作为患者提供更好护理的系统。图像分析活动(例如识别特定大脑区域、计算大脑体积随时间的变化以及检测脑部扫描中的异常)可以由人工智能系统自动执行。这减轻了放射科医生和神经科医生的压力,同时提高了诊断的准确性和效率。现在很明显,尖端人工智能模型与高质量临床数据相结合将增强神经系统疾病的预后和诊断模型,从而允许在整个医疗保健环境中提供专家级临床决策辅助。总之,人工智能与神经病学的融合彻底改变了诊断、治疗和研究。随着人工智能技术的进步,它们有望进一步解开神经系统疾病的复杂性,从而改善患者护理和生活质量。人工智能与神经病学的共生让我们看到了创新和同情心融合重塑神经医疗保健的未来。本摘要简要概述了人工智能在神经病学中的作用及其变革潜力。