摘要:本研究提出将基于 BB84 协议的量子密钥分发 (QKD) 与改进的逻辑映射 (ILM) 相结合,以提高数据传输的安全性。该方法将 BB84 的量子密钥形成与 ILM 加密相结合。这种组合创建了一个额外的安全层,默认情况下,BB84 上的操作只是 XOR 替换,而 ILM 的加入会在量子密钥上创建排列操作。实验使用多种量子测量进行测量,例如量子比特误码率 (QBER)、极化误码率 (PER)、量子保真度 (QF)、窃听检测 (ED) 和基于纠缠的检测 (EDB),以及经典密码分析,例如比特误码率 (BER)、熵、直方图分析、归一化像素变化率 (NPCR) 和统一平均变化强度 (UACI)。结果表明,该方法获得了令人满意的结果,特别是QF和BER达到了完美的水平,EBD也达到了0.999。
图 2 绘制了 BT Group 网络中 28.7 公里已安装光纤(损耗为 16 dB)在 40 天内测得的量子比特误码率 (QBER) 和 SKR。试验的前 36 天仅在光纤上传播 QKD 信号的情况下进行。值得注意的是,当(第 36 天)C 波段(1530 至 1560 nm 之间)的 31 个 DWDM 信道被复用到同一光纤上时,我们未发现量子比特误码率或安全密钥速率有任何变化。这些测量受到可用波长数量的限制,但通过增加激光功率,我们观察到在存在 QKD 的情况下可以支持 >20dBm 的发射功率,相当于 100 个具有 0 dBm 发射功率的信道。
摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。
摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。
随着科技与时代的发展,新媒体技术与互动装置艺术的发展也慢慢走入了我们观众的视野。它简直就是“无声的艺术”。公众不再像传统那样“隐退”,而是参与其中,与艺术家一起畅游在艺术的世界里。本文旨在研究人工智能与无线网络通讯在互动装置艺术中的应用。通过各种通讯设备的优化,各种算法的不断进步,加强我们互动装置艺术之间的沟通与联系。本文提出,随着人工智能与无线网络通讯的加入,艺术家与观众之间的互动可能会更加有趣,让我们的生活更加丰富多彩。本文的实验结果表明,在进行无线网络通信时,加入人工智能的智能算法的通信延迟率比不加入人工智能的智能算法低很多,说明它们能够更好的将信息传递到控制端。当受到外界影响时,无线网络通信的误码率会上升,但是加入人工智能算法在他的影响范围内,他的误码率上升明显没有那么高。在无线网络通信过程中,改进后的算法在能耗、通信延迟、误码率等方面肯定要优于未改进的算法。通过信号的增强、通信设备材料的选择,这些都是在不断进步,在这方面也在不断探索。与其他算法相比,ML算法的定位精度提升了70%、65%、30%左右。增加传输信号的节点数量,可以大大减少节点间的跳数,相应减少跳距误差,相应减少距离估算误差,提高定位精度。可以更快解决互动装置艺术的技术壁垒。
• 讨论电信的历史,特别是从 1G 到 5G 及以后的发展。 • 了解不同类型的传输介质、它们的特性以及不同技术的带宽要求。 • 了解链路预算分析,计算给定带宽和误码率所需的传输功率。 • 熟悉不同的主题,例如 IP 语音、专利、密码学、机器学习、蜂窝通信、电信标准、无线网络、分组网络、云计算、多协议标签交换 (MPLS)、软件定义网络 (SDN) 等。
信号越弱,其电平越接近背景噪声电平。此处的噪声定义为自然和人为电磁辐射引起的不需要的无线电信号。信号强度和背景噪声电平之间的关系称为信噪比。当信噪比降低时,最终很难无误地解码传输信号中包含的信息。尝试解码接收到的模拟符号以产生相应数字位的失败率称为误码率 (BER)。当 BER 足够高时,通信将完全失败。
信号越弱,其电平越接近背景噪声电平。此处的噪声定义为自然和人为电磁辐射引起的不需要的无线电信号。信号强度和背景噪声电平之间的关系称为信噪比。当信噪比降低时,最终很难无误地解码传输信号中包含的信息。尝试解码接收到的模拟符号以产生相应数字位的失败率称为误码率 (BER)。当 BER 足够高时,通信将完全失败。
信号越弱,其电平就越接近背景噪声电平。噪声在此被定义为自然和人为电磁辐射引起的不需要的无线电信号。信号强度和背景噪声电平之间的关系称为信噪比。当信噪比降低时,最终很难无误地解码传输信号中包含的信息。尝试解码接收到的模拟符号以产生相应的数字位的失败率称为误码率 (BER)。当 BER 足够高时,通信将完全失败。