诱变育种在培育大麦优良品种方面发挥了重要作用,可以提高性状的改善。这一过程需要将种子暴露在化学药品或辐射等诱变剂中以引发突变,从而可能产生新的有利性状 (Patial 等人,2014;Patial 等人,2008)。随后,选择突变植物并进行杂交或自交以稳定诱发的性状。这种方法已被证明在培育抗病高产大麦品种方面特别有效。一个著名且众所周知的例子是“Golden Promise”大麦品种,它是在 20 世纪 50 年代通过应用伽马辐射培育出来的。这种广受欢迎的大麦品种因其矮小和高产而声名鹊起,使其成为酿酒和农业用途的理想选择。
Benzer 当时曾接受过加州理工学院常驻果蝇专家 Edward Lewis(现为托马斯·亨特·摩根生物学名誉教授)的果蝇技术培训,但他对此有不同的看法。果蝇产量高,易于饲养,而且不难饲养。此外,对于这种简单的生物来说,它们的行为方式相当丰富。直到 Benzer 和他的学生开始用诱变剂培养他们的标本,并研究从测试中散落出来的大量奇怪和退化的后代时,他才意识到这一点。当时的挑战是研究导致衰老的这些行为异常以及神经功能障碍,以及研究特定神经系统基因突变导致的这些功能障碍。Benzer 和他的合作者开发了实验和分析技术来完成精确的分析,正如 Crafoord 所说,“他和他的许多同事创造了一个新的非常成功的研究领域。”
甲基磺酸乙酯 (EMS) 诱导的诱变是生成遗传资源的有力工具,可用于识别未开发的基因和表征基因的功能,以了解重要农学性状的分子基础。本综述重点介绍当代 EMS 诱变在植物发育和非生物胁迫耐受性研究领域的应用,特别着重回顾突变类型、诱变位点、诱变剂浓度、诱变持续时间、导致胁迫耐受性改变的突变的识别和表征。本文还讨论了 EMS 突变育种与基因工程相结合在未来植物育种和基础研究中的应用。本综述中的集体信息将为如何有效应用 EMS 诱变来提高作物的非生物胁迫耐受性提供良好的见解,并使用下一代测序 (NGS) 进行突变识别。
该课程将为学生提供实验室和理论经验的组合,以探索微生物学的一般方面。它包括微生物的一般特征,它们的形态,多样性,细胞/粒子结构,生长和文化特征。它还阐明了跨细菌细胞膜,代谢途径和细菌生理学的不同运输机制。该课程还涵盖了遗传特征的原理,包括DNA和RNA结构,复制,不同形式的突变和诱变剂。Moreover it introduces the advanced concepts of medical immunology, with an emphasis on host parasite relationship, non-specific and specific immunity, mechanism of immune response, molecular and cellular immunology, including antigen, antibody structure and function, their interactions, effector mechanisms, complement, cell mediated immunity, active and passive immunization, aberration of immune system including hyperactivation and hypersensitivity,免疫缺陷障碍,自身免疫和自身免疫性疾病,器官移植,癌症免疫疗法和血清学反应。
基于各种化学和物理诱变剂的抽象突变育种会诱导并破坏非靶基因座。因此,视觉筛查需要大量人群,但是所需的植物很少见,这是识别理想突变体的进一步费用。生成的突变体由于非靶向突变而具有很高的缺陷,农艺性能差。突变技术通过靶向诱导的基因组局部病变(耕种)增强,促进了理想种质的选择。另一方面,通过CRISPR/CAS9进行编辑的基因允许将基因敲低以进行定位突变。这种方便的技术已被利用用于修饰脂肪酸剖面。在广泛的农作物中获得了高油酸遗传库存。此外,将淀粉,多乳糖和口味等不良种子成分积累的基因被拆除以提高种子质量,这有助于改善油含量并减少抗营养成分。
农杆菌转移 DNA (T-DNA) 是一种有效的植物诱变剂,已用于在拟南芥中创建序列索引的 T-DNA 插入系,作为研究基因功能的工具。创建 T-DNA 插入系需要一种可靠的方法来定位基因组中的插入位点。在本方案中,我们描述了一种接头连接介导的 PCR 方法,我们已使用该方法筛选突变体文库并识别了超过 150,000 个 T-DNA 插入突变体;该方法还可用于绘制单个突变体的图谱。该过程包括三个步骤:限制性酶介导的接头与基因组 DNA 的连接;使用针对接头和 T-DNA 的特异性引物对 T-DNA/基因组 DNA 连接处进行 PCR 扩增;对 T-DNA/基因组连接处进行测序以便绘制到参考基因组。在大多数情况下,测序的基因组区域延伸到 T-DNA 边界,从而可以识别插入物的准确位置。整个过程需要2周时间才能完成。
ADN - 关于国际内河运输危险货物的欧洲协定;ADR - 关于国际公路运输危险货物的协定;AIIC - 澳大利亚工业化学品目录;ASTM - 美国材料试验协会;bw - 体重;CLP - 分类标签包装法规;法规 (EC) No 1272/2008;CMR - 致癌物、诱变剂或生殖毒物;DIN - 德国标准化协会标准;DSL - 国内物质清单(加拿大);ECHA - 欧洲化学品管理局;EC-Number - 欧共体编号;ECx - 与 x% 反应相关的浓度;ELx - 与 x% 反应相关的加载率;EmS - 紧急状况时间表;ENCS - 现有和新化学物质(日本);ErCx - 与 x% 增长率反应相关的浓度;GHS - 全球协调制度; GLP - 良好实验室规范;IARC - 国际癌症研究机构;IATA - 国际航空运输协会;IBC - 国际散装运输危险化学品船舶构造与设备规则;IC50 - 半数最大抑菌浓度;ICAO - 国际民用航空组织;IECSC - 中国现有化学物质名录;
5 空气毒物的特征效应 ................................................................................................................................ 48 5.1 什么是毒性值以及 NATA 如何使用它们?........................................................................... 48 5.2 NATA 中使用哪些类型的毒性值?.................................................................................... 49 5.2.1 癌症单位风险评估 ............................................................................................................. 49 5.2.2 非癌症慢性参考浓度 ............................................................................................. 51 5.3 NATA 使用哪些毒性值数据来源?.................................................................... 52 5.3.1 美国环保署综合风险信息系统 ...................................................................................... 52 5.3.2 美国卫生与公众服务部有毒物质与疾病登记署 ........................................................................................ 53 5.3.3 加州环境保护署环境健康危害评估办公室 ............................................................................................. 53 5.3.4 美国环保署健康影响评估汇总表 ...................................................................................... 53 5.3.5 世界卫生组织国际癌症研究机构 ............................................................................. 53 5.4 对于某些化学品,在毒性值方面还做出了哪些其他决定?................................................................................................................................................ 54 5.4.1 有口服评估但缺乏吸入评估的致癌物 ...................................................................................................... 54 5.4.2 多环有机物 ............................................................................................................................. 55 5.4.3 乙二醇醚 ............................................................................................................................. 55 5.4.4 金属 ............................................................................................................................. 55 5.4.5 调整诱变剂 URE 以考虑儿童时期的接触 ............................................................................. 56 5.4.6 柴油颗粒物 ............................................................................................................................. 56 5.4.7 其他说明 ............................................................................................................................. 57 5.5 总结 ............................................................................................................................................. 57
当今时代,随着越来越多的动物基因组序列组装被报道,对转座因子 (TE) 的深入分析是进化基因组学最基本和最重要的研究之一。尽管 TE 一般被认为是无功能的垃圾/自私 DNA、寄生因子或有害诱变剂,但研究表明,TE 在几个方面对宿主基因组产生了重大影响,有时甚至是有益的影响。首先,TE 本身是多样化的,因此为基因组提供了谱系特异性特征。其次,由于 TE 构成了动物基因组的很大一部分,因此它们是基因组大小和组成进化变化的主要贡献因素。第三,宿主生物已将许多重复序列选为基因、顺式调控元件和染色质域边界,这些序列改变了基因调控网络,此外还部分参与了形态进化,这在哺乳动物中已有充分证明。在这里,我回顾了 TE 对基因组各个方面的影响,例如动物的基因组大小和多样性,以及哺乳动物基因网络和基因组结构的进化。鉴于许多非模式生物中可能还有许多 TE 家族有待发现,未知的 TE 可能对比以前考虑的更广泛的动物的基因网络做出了贡献。
重离子束是一种电离辐射,它已作为一种强诱变剂应用于植物育种,并且是一种诱导大规模缺失和染色体重排的有前途的工具。重离子辐照的有效性可以用线性能量转移 (LET;keV µm -1 ) 来解释。不同 LET 值的重离子束会诱发不同类型和大小的突变。已有研究表明,缺失大小随 LET 值的增加而增大,较高的 LET 辐射会诱发复杂的染色体重排。在本研究中,我们将在拟南芥突变体中检测到的重离子束诱导的缺失定位到其基因组中。我们发现,不同的 LET(100 至 290 keV mm -1 )之间的缺失大小相似,其上限受必需基因分布的影响,并且检测到的染色体重排避免了破坏必需基因。我们还重点研究了串联基因 (TAG),即基因组中两个或多个同源基因相邻。我们的结果表明,100 keV µm -1 的 LET 足以破坏 TAG,并且必需基因的分布会强烈影响与其重叠的突变的遗传性。我们的研究结果提供了拟南芥基因组中大量缺失诱导的基因组视图。