对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
4 这些作者贡献相同 *通信地址:muhaoran@sslab.org.cn (HM);linshenghuang@sslab.org.cn (SL) 收稿日期:2024 年 9 月 11 日;接受日期:2024 年 12 月 16 日;在线发表日期:2024 年 12 月 23 日;https://doi.org/10.59717/j.xinn-mater.2024.100113 © 2025 作者。这是一篇根据 CC BY 许可开放获取的文章 (https://creativecommons.org/licenses/by/4.0/)。引用:Wang P.、Mu H.、Yun T. 等人 (2025)。1D-2D 横向范德华异质结中的高整流和栅极可调光响应。创新材料 3:100113。自钝化表面和减少的隧穿漏电流使得在范德华 (vdW) 半导体异质结中创建理想的肖特基接触成为可能。然而,同时实现高整流比、低反向漏电流和快速光响应仍然具有挑战性。在这里,我们提出了一种一维 (1D)/二维 (2D) 混合维异质结构光电二极管来解决这些挑战。该结构中显著的价带偏移和最小的电子亲和能差异确保了高整流比和高效的电荷收集。此外,1D 和 2D 材料之间的尺寸差异,其特点是接触面积较小和厚度差异显著,导致低反向漏电流和高电流开关比。此外,它能够实现栅极可调的能带结构转变。我们的器件在室温下表现出 4.7 × 10 7 的出色整流比和 5 × 10 7 的高开关比(V ds = 2 V 和 V g = 30 V)。在 20 V 的栅极电压下,光电二极管实现了 4.9 × 10 14 Jones 的比探测率 (D * )、14 μs 的快速响应时间和接近 1550 nm 的扩展工作波长。混合维度设计和能带工程的战略组合产生了具有出色灵敏度、可重复性和快速响应的 1D-2D pn 异质结光电二极管,凸显了 vdW 半导体在先进光电应用方面的潜力。
摘要。光学超表面已成为光子学的一项突破性技术,它利用超薄表面纳米结构在亚波长尺度上对光 - 物质相互作用提供无与伦比的控制,从而催生了平面光学。虽然大多数已报道的光学超表面都是静态的,具有由制造过程中设定的成分和配置决定的明确定义的光学响应,但通过施加热、电或光刺激具有可重构功能的动态光学超表面的需求越来越大,并成为研究和开发的前沿。在各种类型的动态控制超表面中,电可调光学超表面因其响应时间快、功耗低和与现有电子控制系统兼容而显示出巨大的前景,为通过电调制动态可调光 - 物质相互作用提供了独特的可能性。在这里,我们全面概述了在这个快速发展的领域中探索的最先进的设计方法和技术。我们的工作深入研究了电调制的基本原理、实现可调性的各种材料和机制以及主动光场操纵的代表性应用,包括光振幅和相位调制器、可调偏振光学器件和波长滤波器以及动态波整形光学器件(包括全息图和显示器)。本综述以我们对电触发光学超表面未来发展的看法结束。
7m(在房间内)可以通过添加Zigbee网络网络中继器(240V Sonesse 40 AC Zigbee,Philips Hue Smart Plugs和Izymo Zigbee接收器)
摘要:自发光显示设备在各种工作环境中必不可少,例如飞机驾驶舱以及车辆和火车的驾驶室,这些环境中的外部光环境变化很大。由于光照变化很大,根据环境光照自动调节显示亮度对于驾驶员高效舒适地工作是必要的。本研究提出了一种基于人体工程学测试三个维度的显示调光模型,包括视觉性能(VP)、视觉舒适度(VC)和视觉疲劳(VF)。本实验展示了五种环境照度,每种环境照度与五种显示亮度水平相结合,共形成 25 种条件。采用受试者内设计,十位观察者体验了所有组合条件。实验采用 Anfimov 表测试 VP、VC 量表评估 VC 和 VF 量表评估 VF。根据实验结果,构建子模型以阐明每个维度(VP、VC 和 VF)的特征。随后,采用层次分析法,计算各维度在总分中的权重,构建评价体系。最后,利用指数拟合,构建大范围显示调光模型,明确描述复杂光环境匹配的内在联系。© 作者。由 SPIE 在 Creative Commons Attribution 4.0 Unported License 下发布。在 who 中分发或复制此作品
量子密钥分发 (QKD) 允许两个合法实体 Alice 和 Bob 共享一组密钥,但可能会被窃听者 Eve 操纵 [1–5]。目前,离散变量 (DV) QKD 已经得到发展,但它在源准备、检测成本和密钥速率方面仍然面临挑战 [6,7]。连续变量 (CV) QKD 是实现 QKD 的另一种方法 [8–13]。它具有实现方便的优势,因为它可以使用多种源,如相干态 [14] 和压缩态 [15]。尽管如此,CVQKD 也面临着实际安全性的威胁 [16–18],原因是设备不完善、技术缺陷和操作不完善 [10,19,20]。例如,Eve 可以通过控制波长相关分束器 (BS) 的透射率来执行波长攻击 [21-23]。校准攻击可以通过修改本振 (LO) 脉冲的形状来实施 [24]。因此,已经提出了多种对策来抵消 LO 校准攻击和波长攻击的影响 [25-27]。在 CVQKD 的实际实现中,相干探测器变得脆弱。目前,在窃听零差探测器中的不完美电子时已经执行了饱和攻击 [2, 28]。它可以用于攻击系统的实际设备,因此它唤醒了实际的安全性,因为相干探测器具有有限线性域,可以通过移动接收到的正交的平均值将其驱动到外部(如果没有被监控)。此外,Eve 可以执行异差检测来测量截获的正交 X 和 P,从而为伪造相干态做准备 [28, 29]。为了抵消这种攻击,我们可以在同差探测器中采用嵌入式可调光滤波器 (AOF),用于实时补偿强接收光功率导致的潜在饱和。基于检测响应的反馈,可以使用支持 AOF 的检测来抵消这种饱和攻击,这是雪崩光电二极管 (APD) 的实际增益调整。
敏感传感器、全光开关和可重构分插滤波器[5-7]。前期工作中,利用微环谐振器(MRR)的对称谐振特性,已经制作出许多带宽可调的器件[8-12]。例如,一种是基于单个微环谐振器的滤波器,其谐振器的耦合系数由微机电系统调整。然而,要实现 MEMS 可调谐性,需要施加近 40 V 的高驱动电压 [5]。另一种也是基于单个微环谐振器的滤波器 [13]。其谐振器的耦合系数由热光移相器调整。这种滤波器的缺点是带宽变化范围有限,带外抑制性能较差。还有一种结合了 MZI 和环形谐振器的滤波器,环形谐振器嵌入 MZI 臂中,其带宽调谐受到带内纹波和插入损耗的限制 [14]。在本文中,我们展示了一种基于环形谐振器和具有 Fano 谐振的 MZI 的带宽可调光学滤波器。它由两个单个 MRR 和一个由两个 1 9 2 多模干涉 (MMI) 构成的 MZI 结构组成。两个单个 MRR 的耦合系数均由热光移相器调谐。在这种新设计中,由两个 TiN 加热器控制的两个 MRR 可用于产生额外的相位以打破正常 MRR 的对称洛伦兹形状。通过两个不对称洛伦兹形状的叠加可以观察到 Fano 谐振,并且 3 dB 通带明显增宽。利用硅的热光(TO)特性,带宽范围从0.46到3.09nm,比以前的器件更宽。输出端口的消光比大于25dB,自由光谱范围(FSR)为9.2nm,适合光电集成电路中的传输。众所周知,通过端口3dB,带宽是一个重要的
600 North Centennial Street | Zeeland, MI 49464 edw@gentex.com | 电话:616.772.1800 | 传真:616.772.7348
注意:1.我们强烈建议客户在购买我们的产品时仔细检查商标,如果有任何问题,请随时与我们联系。2.电路设计时请不要超过设备的绝对最大额定值。3.Winsemi Microelectronics Co., Ltd 保留对本规格书进行更改的权利,如有更改,恕不另行通知。