低能量调幅射频电磁场 (LEAMRFEMF) 暴露为晚期肝细胞癌 (AHCC) 患者提供了一种新的治疗选择。我们关注两种医疗设备,它们可以调制 27.12 MHz 载波的幅度以生成低 Hz 到 kHz 范围内的包络波。每种设备都通过颊内天线提供 LEAMRFEMF 的全身暴露。这项技术不同于所谓的肿瘤治疗场,因为它使用不同的频率范围,使用电磁场而非电场,并且系统地而不是局部地传递能量。AutemDev 还部署了特定于患者的频率。LEAMRFEMF 设备的功耗比手机低 100 倍,并且对组织没有热影响。可以通过测量暴露于 LEAMRFEMF 引起的血流动力学变化来得出特定于肿瘤类型或特定于患者的治疗频率。这些特定频率在体外和小鼠异种移植模型中抑制了人类癌细胞系的生长。在 AHCC 患者的非对照前瞻性临床试验中,少数患者出现完全或部分肿瘤反应。汇总比较显示,与历史对照组相比,接受治疗的患者总体生存率有所提高。轻度短暂嗜睡是唯一值得注意的治疗相关不良事件。我们假设带电大分子和离子流的细胞内振荡与 LEAMRFEMF 共振耦合。这种共振耦合似乎会破坏细胞分裂和线粒体的亚细胞运输。我们通过计算输送到细胞的功率以及由于 EMF 诱导沿微管的离子流而通过细胞耗散的能量,来估计电磁效应对暴露细胞总能量平衡的贡献。然后,我们将其与细胞总代谢能量产生量进行比较,并得出结论,LEAMRFEMF 提供的能量可能会使癌细胞代谢从异常
综合电子战 (EW) 系统可对空中、地面和海军雷达发射器进行探测和测向,方位角精度为 +/- 30 度。EW 系统可以检测和分类在 1.2-18 GHz 频段发射的雷达。可调节的电子攻击 (EA) 干扰可用于降低以连续波和脉冲模式运行的武器控制雷达的有效性。EA 吊舱可以固定在机翼下悬挂硬点上。为了防御红外制导导弹,使用一次性照明弹。Su-25T 配备了 192 枚照明弹。此外,为了防御红外制导导弹,在飞机尾部安装了电光干扰系统“Sukhogruz”。这款能耗为 6 千瓦的强大铯灯可产生调幅干扰信号,阻止红外制导导弹进行制导。
EMC(EMI)EN61326+A1 工业辐射外壳:CISPR 11 第 1 组 A 类:CISRP16-1/-2 辐射交流电源:CISPR 11 第 1 组 A 类:CISRP16-1/-2(EMS)EN61326+A1 工业抗 ESD 能力:EN61000-4-2:4 kV 接触放电(2 级)8 kV 空气放电(3 级)抗 RF 干扰能力:EN61000-4-3:10 V/m(调幅,80 MHz 至 1 GHz)(3 级)抗快速瞬态噪声能力:EN61000-4-4:2 kV(电源线)(3 级)抗突发噪声能力:1 kV 线对线(I/O 信号线)抗浪涌能力:EN61000-4-5: 1 kV 线对线 2 kV 线对地 (电源线) 传导干扰抗扰度 EN61000-4-6: 3 V (0.15 至 80 MHz) (2 级) 电压骤降/中断抗扰度 EN61000-4-11: 0.5 个周期,0,180 °,100% (额定电压)
1.固体的结构类型 α) 金属和非金属 β) 二元化合物: AB, AB 2 , AB 3 , A 2 Β 3 , A x B y γ) 三元化合物: ABX 2 , ABX 3 , AB 3 , AB 2 Χ 4 , A 2 ΒΧ 4,AB 2 Χ 2 δ) 金属间化合物和Zintl 相ε) 模块化化合物:多型体、同系系列和失配层状化合物2. 能带结构(基于R. Hoffmann 评论)。 α) 从分子轨道开始构建“意大利面条”图。 β) 电子不稳定性(Peierls 畸变、Jahn-Teller 效应) γ) 态密度、能带折叠、直接和间接带隙 δ) 量子限制:低维材料、量子阱、量子线、量子点 3. 晶体中的非化学计量和缺陷 α) 非化学计量和扩散。热淬火、烧结和退火。 β) 相图、共晶、调幅分解和固溶体。 γ) 相变。无机固体、晶体和非晶态固体中的相变。 4. 合成方法 α) 固相合成、湿法合成、溶剂热合成 β) 晶体生长 从熔体、溶液和蒸汽传输中生长。
航空电子设备是飞机、人造卫星和航天器上使用的电子系统。航空电子系统包括通信、导航、多个系统的显示和管理,以及安装在飞机上以执行单独功能的数百个系统。1. 飞机航空电子设备1.1 通信通信将驾驶舱与地面以及驾驶舱与乘客连接起来。机上通信由公共广播系统和飞机对讲机提供。甚高频航空通信系统工作在 118.000 MHz 至 136.975 MHz 的航空波段。欧洲每个频道与相邻频道的间隔为 8.33 kHz,其他地区为 25 kHz。甚高频也用于视距通信,例如飞机对飞机和飞机对空中交通管制。使用调幅 (AM),通话以单工模式进行。飞机通信也可以使用 HF(尤其是跨洋飞行)或卫星通信进行。 1.2 导航 导航是指在地球表面或上方确定位置和方向。航空电子设备可以使用卫星系统(如 GPS 和 WAAS)、地面系统(如 VOR 或 LORAN)或两者的任意组合。导航系统会自动计算位置,并在移动地图显示器上将其显示给机组人员。较旧的航空电子设备需要飞行员或导航员在纸质地图上绘制信号交叉点以确定飞机的位置;现代系统会自动计算位置,并在移动地图显示器上将其显示给机组人员。1.3 监控
可以使用调幅激光在 MEMS 麦克风的输出端生成虚假但相干的声学信号。虽然这种漏洞会对信任这些麦克风的网络物理系统的安全性产生影响,但这种影响的物理解释仍然是个谜。如果不了解导致这种信号注入的物理现象,就很难设计出有效可靠的防御措施。在这项工作中,我们展示了热弹弯曲、热扩散和光电流产生机制在多大程度上被用于将信号注入 MEMS 麦克风。我们为每种机制都提供了模型,开发了一种程序来经验性地确定它们的相对贡献,并强调了对八种商用 MEMS 麦克风的影响。我们通过使用几种激光波长和一个真空室的精确设置来隔离每种机制来实现这一点。结果表明,麦克风上的注入信号取决于入射光的波长,其中长波长(例如 904 nm 红外激光)利用 ASIC 上的光电效应,而短波长(例如 450 nm 蓝色激光)利用振膜和周围空气上的光声效应。根据这一理解,我们为未来的抗激光麦克风设计提出了建议,包括改进球顶应用、减少 MEMS 结构内的材料不对称性,以及添加简单的光或温度传感器以进行注入检测。基于根本的因果关系,我们还指出了具有与 MEMS 麦克风相似特性的其他传感器中可能存在的漏洞,例如传统麦克风、超声波传感器和惯性传感器。
A 或 ˚ A 埃单位 5 10 2 10 米;3.937 3 10 2 11 英寸 A 质量数 5 N 1 Z;安培 AA 算术平均值 AAA 美国汽车协会 AAMA 美国汽车制造商协会 AAR 美国铁道协会 AAS 美国宇航协会 ABAI 美国锅炉及附属工业 abs 绝对 ac 空气动力中心 ac,ac 交流电 ACI 美国混凝土协会 ACM 计算机协会 ACRMA 空调和制冷制造商协会 ACS 美国化学协会 ACSR 铝电缆钢筋 ACV 气垫车 AD anno Domini(公元 1855 年) AEC 美国原子能委员会 af,af 音频频率 AFBMA 抗摩擦轴承制造商协会 AFS 美国铸造工人协会 AGA 美国燃气协会 AGMA 美国齿轮制造商协会 ahp 空气马力 AlChE 美国化学工程师协会 AIEE 美国电气工程师协会(参见 IEEE) AIME 美国采矿工程师协会 AIP 美国物理学会 AISC 美国钢结构协会 AISE 美国钢铁工程师 AISI 美国钢铁协会 am ante meridiem(中午之前) am, am 调幅 Am. Mach. 美国机械师(纽约) AMA 声学材料协会 AMCA 空气移动与调节协会 amu 原子质量单位 AN 硝酸铵(爆炸物);陆军-海军规范 AN-FO 硝酸铵燃料油(爆炸物) ANC 陆军-海军民用航空委员会 ANS 美国核能协会
A 安培 h 小时 oz 盎司 ac 交流电 hf 高频 o.d. 外径 AM 调幅 Hz 赫兹 Ω 欧姆 cd 坎德拉 i.d. 内径 p. 页 cm 厘米 in 英寸 Pa 帕斯卡 CP 化学纯 IR 红外线 pe 可能误差 c/s 每秒周期 J 焦耳 pp. 页数 d 天 L 朗伯 ppm 百万分率 dB 分贝 L 升 qt 夸脱 dc 直流电 lb 磅 rad 弧度 ° C 摄氏度 lbf 磅力 rh 相对湿度 ° F 华氏度 lbf � in 磅力 英寸 s 秒 dia 直径 lm 流明 SD 标准差 emf 电动势 ln 对数(底为 e)秒。节 eq 方程对数对数(底为 10)SWR 驻波比 F 法拉 M 摩尔 uhf 超高频 fc 英尺烛光 m 米 UV 紫外线图。数字 µ 微米 V 伏特 FM 调频 min 分钟 vhf 甚高频 ft 英尺 mm 毫米 W 瓦特 ft/s 英尺每秒 mph 英里每小时 N 牛顿 g 加速度 m/s 米每秒 λ 波长 g 克 mo 月 wk 周 gal 加仑 N � m 牛顿米 wt 重量 gr 格令 nm 纳米 yr 年 H 亨利 编号 数字 面积=单位2(例如,ft 2 、in 2 等);体积=单位3(例如,ft 3 、m 3 等)