•在风险治理中使用气候预后和数据的使用证明,在地理和时间方面,重要的结果是通过适当解决的气候数据分解气候数据。Another important research activity has been communicating knowledge about how changes in climate and weather affect natural hazards and thus society in a way that makes the knowledge applicable for decision-makers and planners (chapter 1) • Raising awareness of uncertainty in risk governance related to climate change through identification of various sources of uncertainty in handling of natural hazards in Longyearbyen, and descriptions of how these uncertainties can be managed and communicated (chapter 2) • Development of a用于评估雪崩预测不确定性的模型和清单,这使得预报员可以意识到预测背后的知识强度和信号进一步调查以减少不确定性。不确定性评估的方法是基于对Longyearbyen中雪崩预测的评估(第3和4章)•识别与建立Vannledningsdalen的Slush Avalanche壁垒的开发相关的不确定性,与Vannledningsdalen建立了与规划和工具的过程有关。特别与不同的参与者通过共同的风险感知在撤离期间如何更有效地通信(第8章)•描述传感器技术如何用作自然危害警告系统系统的一部分,例如Snow Avalanche警告,例如通过在Longyearbyen中传感器系统的开发和使用中的经验经验。研究表明,需要提高对各种过程中不确定性的认识,以及涉及处理和交流不确定性的方法(第5章)•解释当地知识在雪崩警告系统中的重要性,以及对当地知识的各种维度的理解,以及对公共知识的各种知识的各种维度的理解•考虑公共知识的意义(分章),以了解公共知识的意义(分章)在疏散情况下,了解风险可能有助于改善疏散,作为针对急性自然危害的风险管理措施。 此外,与永久的身体措施相比,与风险有关的有关基于传感器警告系统的适用性的讨论(第9章)•了解市政当局如何通过短期准备和长期计划的结合来适应迅速变化的气候条件,包括不确定的不确定性和持续更新风险评估(第10章)•对气候适应性的调查和调查效果,•调高的速度适应性指示器,使高度适应的速度适用于AFIARTIONS AFRIATY AFINES AFIRESITION,AFIRES AFIRAINTION jARARIDES WISTERIDE在本地一级(第11章)研究表明,需要提高对各种过程中不确定性的认识,以及涉及处理和交流不确定性的方法(第5章)•解释当地知识在雪崩警告系统中的重要性,以及对当地知识的各种维度的理解,以及对公共知识的各种知识的各种维度的理解•考虑公共知识的意义(分章),以了解公共知识的意义(分章)在疏散情况下,了解风险可能有助于改善疏散,作为针对急性自然危害的风险管理措施。此外,与永久的身体措施相比,与风险有关的有关基于传感器警告系统的适用性的讨论(第9章)•了解市政当局如何通过短期准备和长期计划的结合来适应迅速变化的气候条件,包括不确定的不确定性和持续更新风险评估(第10章)•对气候适应性的调查和调查效果,•调高的速度适应性指示器,使高度适应的速度适用于AFIARTIONS AFRIATY AFINES AFIRESITION,AFIRES AFIRAINTION jARARIDES WISTERIDE在本地一级(第11章)
音乐转调对工作记忆的要求很高,因为它涉及在唱歌或乐器演奏时将音符从一个音调(即音高音阶)心理转换为另一个音调。由于音乐转调涉及在心理上将音符调高或调低特定量,因此它可能与加法和减法的算术运算共享认知元素。我们比较了受过古典训练的音乐家在音乐转调和数学计算的高和低工作记忆负荷条件下的大脑活动。脑磁图 (MEG) 对任务和工作记忆负荷的差异很敏感。额枕连接在转调过程中高度活跃,但在数学计算过程中不活跃。在更困难的转调任务条件下,右侧运动区和运动前区高度活跃。多个额叶区域在各项任务中都高度活跃,包括在转调和计算任务期间的左侧内侧额叶区域,但仅在计算期间的右侧内侧额叶区域。在更困难的计算条件下,右侧颞区高度活跃。在连贯性分析和神经同步分析中,计算任务之间存在一些相似之处;然而,由于 MEG 的时间分辨率很高,延迟分析对计算任务中任务复杂性的差异很敏感。MEG 可用于检查音乐认知和音乐训练的神经后果。需要进一步系统地研究音乐和其他认知任务的高记忆负荷和低记忆负荷条件下的大脑活动,以阐明音乐家与非音乐家相比工作记忆能力增强的神经基础。
溶瘤病毒疗法是一种有前途的癌症治疗方法,其中“冷”肿瘤细胞可以成为宿主免疫系统的“热”。然而,由于几乎没有FDA批准的疗法,近年来,开发新的癌症类型的新策略已经缓慢且相对不成功,因此联合治疗在其他类型的癌症治疗方面已经成功,因此,可行的替代方法可能是提高苏囊性病毒治疗的疗效,这可能会降低当前使用单疗法的不良事件,而单疗疗法的某些不良事件,以及其他疗法治疗。将溶瘤病毒与免疫检查点抑制剂相结合时,当病毒疗法与药物ipilimumab结合使用时,有效性显着提高。第一阶段和第二阶段的研究得出的结论是,与化学疗法的结合是安全有效的,但并未显着改善当前的单层。最近的实验表明,CAR-T和CAR-M细胞的组合是一种有希望的治疗方法,但需要进步进行临床测试以观察人类对治疗的反应。与ipilimumab的病毒组合表现出成功治疗的最高潜力,并且应将临床试验推进到第三阶段,以找到确定的支持证据。本综述旨在识别和评估目前不断发展的溶瘤病毒疗法的潜力,而遗传工程的最新进展可增强肿瘤的溶瘤活性,并解决“冷”肿瘤中缺乏宿主免疫反应,在增强联合治疗疗法的常规治疗效率方面具有额外的作用。肿瘤病毒的潜力“调高肿瘤微环境免疫原性的热量”与其他抗癌治疗相结合,为新的癌症疗法提供了有希望的未来。
弃电只是日益严重的冰山一角 电力服务 英国电网在高峰时段消耗高达 54 千兆瓦 (GW) 的电力。那是 5400 万千瓦——很多电力。所以我们需要生产 54GW 的电力,再加上一点以防万一——比如 57-60GW,对吗? 错了。事情没那么简单。虽然所有的电都是一样的(电子沿着电线传输),但我们消耗四种类型的服务:基载、可调度、平衡和辅助。♦ 基载是最低需求,即始终在线的要求。在英国,它大约是峰值的 60%,所以在冬季,大约是 32GW。 ♦ “可调度”意味着当我们需要时,它就在那里:我们可以随意调高或调低。这占了峰值需求的剩余 40%。♦ 平衡服务适用于当事情失衡时:这里太多,那里不够,发电站因年度服务而停运(就能源需求而言,这是主要的服务)等等。♦ 辅助服务适用于出现问题时:发生故障时快速反应,等等。在中央电力局的旧时代,我们用煤和核电站提供基本负荷,其余则通过天然气输送。那时事情是多么简单啊!现在,因为我们意识到我们的排放正在席卷世界,我们正在用可再生能源取代煤炭(首先)和天然气:主要是生物质、风能、太阳能、波浪能、潮汐能和潮汐范围。其中,只有生物质(迄今为止五种能源中潜在容量最小)是可调度的或基本负荷。其余的是一个新的发电类别:间歇性。间歇性发电的影响 间歇性发电并不意味着发电不可预测:如今的预测非常准确,并且还在不断改进。但是,这意味着发电量是它想在的时候出现,而不是我们想要的时候出现——预测只是让我们更好地注意到盈余和短缺。正如西门子石油天然气英国公司总经理所说 1 ,“风吹的时候就吹,你想吃饭的时候就吃饭”。这意味着,有时它在我们不想要的时候发电,而当我们需要它而它却不发电时,它需要备用。前者导致削减(支付可再生能源发电不发电的费用),后者导致平衡和辅助服务成本不断增加。图 2 显示了间歇性发电将如何消除德国的基本负荷发电,除非以某种方式削减。
人工智能的起源可以追溯到电子设备出现之前,当时的思想家和数学奇才如布尔等人提出了一些理论,这些理论后来被用作人工智能推理的基础。本主题旨在向人工智能及其应用的令人兴奋的用户传达信息。早在 20 世纪 50 年代初,人们就发现了人工智能与机器之间的联系。诺伯特·维纳 (Norbert Wiener) 是第一批从反馈反馈的角度进行研究的美国人之一,混乱的人工智能于 1956 年在达特茅斯学院首次诞生,由被认为是人工智能之父的约翰·麦卡锡 (John McCarthy) 组织。响应理论最熟悉的例子之一是控制器:它通过测量房间的实际温度、将其调节到选定的温度以及通过调高或调低温度做出反应来调节房间的温度。维纳对反馈循环的研究如此重要,是因为他认为所有智能行为都是反馈机制的结果。1955 年末,纽厄尔和西蒙创建了推理理论家,许多人认为这是第一个人工智能程序。该程序将每个问题视为树形结构,并将尝试通过选择最可能导致正确闭包的分支来解决它。1957 年,新程序通用问题求解器 (DIRECTION FINDER) 的第一个版本进行了测试。该系统由创建“哲学家”的同一套系统开发。人工智能是维纳反馈理论的扩展,并且可以解决更高层次的逻辑问题。在人工智能问世几年后,IBM 收购了一个研究人工智能的团队。Herbert Gelernter 花了三年时间为处理几何论文的课程提供服务。在开发更多计划的同时,麦卡锡正在积极推动人工智能历史的重大进步。1958 年,麦卡锡推出了他的新发明:LISP 语言,至今仍在使用。LISP 很快就被许多 AI 程序员视为首选语言,并且从那时起,人工智能就因其专业人士创造的理念和概念而得到了广泛的传播。人工智能是信息技术、数学和方法以及数学和许多其他技术的结合。人工智能是一个广泛的主题,包括从机器学习到人工智能等各种领域。人工智能领域所揭示的一点是可以简单“思考”的机器的发展。人工智能的应用需要多种技术,包括专业/技术系统、语义网络、基于案例的推理、模式匹配、人工智能和模糊逻辑。
变电站电池充电器在确保电动系统中必需电气系统的连续性中起着至关重要的作用。无法维持此供应会导致设备和人员损坏。DC系统包括高压工业/实用工具变电站的最重要组成部分,为保护设备和高压组件提供了能量,从而可以安全地隔离电气故障。通常,变电站电池充电器位于密封或洪水泛滥的细胞库中,在正常操作过程中可提供最小的电流。连续的负载电流在电池上保持恒定电荷,而充电器则在必要时提供额外的电流。失败的充电器或跳闸系统表示需要有效维护和潜在升级。电池充电系统平均最多可以持续8小时,可调节持续时间适合安装或应用要求。选择正确的充电器对于确保电池系统的寿命至关重要。Acrabatt变电站电池充电器系统通过提供可调节,可访问且灵活的解决方案来解决常见的设计问题,例如改造安装和维护复杂性。该系统具有带有数字显示的多功能警报,可轻松编程,并可以使用其他输出模块集成到SCADA或监视系统中。它的19英寸机架设计包括可调高的组件,可移动的侧面板和模块化电缆输入选项,使安装和修改更有效,更具成本效益。它符合ENA标准,其所有零件均经过认证。Acrabatt变电站电池充电器系统是一种可靠,负担得起的解决方案。如果您有兴趣了解有关此系统的更多信息,请与我们联系以获取更多信息。这项技术在电气传输和分销网络中起着至关重要的作用。有关其他应用程序,请参见变电站(主要文章)。变电站是电气发电,传输和分配系统的一部分。它将电压水平从高低转换为低,反之亦然,在两者之间执行各种基本功能。从发电厂到消费者,电能通常以不同电压水平的几个变电站流动。一个典型的变电站包括调节高传输电压和较低分布电压之间的电压水平,或者两个不同的传输电压满足的变压器。它们是我们基础设施的基本组成部分。仅在美国就有大约55,000个变电站。这些设施可能归电气公用事业或大型工业/商业客户所有。通常,它们依赖于远程SCADA的监督和控制,它们会无人看管。术语“变电站”来自一个尚未基于网格的时代。随着中央电站的扩展,较小的一代工厂转化为配电站,从较大的工厂接收能源供应,而不是使用自己的发电机。最初的变电站仅连接到一个发电站,并且本质上是该电站的子公司。Nixon等。Nixon等。可以由承包商或电气实用程序本身设计和建造。最常见的是,该公用事业公司在雇用承包商进行实际建设时处理工程和采购。构建变电站的关键限制包括土地可用性和成本,施工时间限制,运输限制以及需要快速将变电站在线携带。预制通常用于降低建筑成本。变电站可能需要偶尔关闭,但是公用事业公司试图简短地停电。它们对于连接电网或转换电压以确保电力的有效传输和分配至关重要。变电站可以加强电压以进行长距离传输,减少局部分布或将电流从AC转换为DC。即使是最简单的变电站也具有高压开关以进行故障间隙或维护,而较大的变电站可能包括变压器,电压控制设备和复杂的保护设备。一些现代化的变电站遵循IEC 61850等国际标准。分配变电站通常通过降低电压水平将功率从传输系统传输到本地分销网络。这允许电力有效地交付给房屋和企业,而无需直接连接到主要传输网络。相反,他们使用沿街道运行的进料器以中型电压(通常在2.4 kV至33 kV之间)提供电源,具体取决于所服务面积。这些变电站在确保向全球社区的可靠和高效的电力供应方面起着至关重要的作用。分配变电站是电网中电压调节的关键点,尤其是在市中心地区具有高压开关系统复杂变电站的大城市。通常,相应的变电站在低压侧具有开关,一个变压器和最小设施。在诸如风电场或光伏电台之类的分布式生成项目中,收集器变电站用于将电网提高到传输水平。这些变电站还可以提供风电场的功率因数校正,计量和控制。一些例子包括德国的Brauweiler和捷克共和国的Hradec,它们从附近的褐煤燃料植物中收集电力。如果不需要变压器,则变电站是一个开关站,在单个电压级别工作而无需转换电压。切换站用作收集器和分配点,通常用于在故障期间将电流转换为备份线或并行化电路。它们可能被称为切换场,位于电站附近,发电机在院子里提供电力,而传输线则从另一侧的馈线总线拿出电源。变电站的关键功能是切换,连接和断开传输线或往返系统的组件,可以计划或计划外事件。公司旨在在执行维护时保持电力系统的运行,例如添加或删除输电线路或变压器,以确保供应的可靠性。所有工作,从常规测试到构建新变电站,都应使用仍在运行的系统进行。这包括由传输线或其他组件故障引起的计划外的切换事件,例如被雷击或大风吹向塔的线。切换站迅速隔离系统故障,保护设备免受进一步损坏并保持电网中的稳定性。电动铁路还使用定量(通常是分布变电站)进行电流类型的转换,用于直流列车或旋转转换器的整流器,用于与公共网格不同频率的交流电交流。移动变电站的设计定为在公共道路上的旅行,用于自然灾害或战争期间的临时备份。通常,它们的评级低于永久装置,并且由于道路旅行限制,可能会以多个单位建造。变电站设计优先考虑最小化成本,同时确保功率可用性,可靠性和未来变化以及可能的位置,包括室外,室内,地下或组合这些位置。在计划变电站布局时,要考虑环境影响,安全性和扩展潜力等因素至关重要。该站点必须能够适应未来的负载增长或增加传输,并减轻对环境(例如排水,噪声和交通)的影响。理想情况下,变电站应集中位于其分布区域内,以确保有效的电源。安全性也是至关重要的,采取了防止未经授权访问并保护人员和设备免受电气危害的措施。土杆可用于增强较低的电阻接地。要开始设计变电站布局,准备了一个单线图,说明了开关和保护布置,以及传入的供应线和传出输电线路。此图通常具有主元素,例如线条,开关,断路器和变压器,其排列与实际站点布局相似。传入线通常具有断开的开关和断路器,有些情况只有一个或另一个。断开开关通过不中断负载电流提供隔离,而断路器可以防止故障电流,并且当电源以错误的方向流动时可以开/关。大断层电流触发电流变压器绊倒断路器,断开负载并将故障点与系统的其余部分隔离。开关和断路器都可以在变电站内本地操作,也可以从控制中心进行远程操作。使用高架传输线,由于雷电和切换潮可能会导致绝缘故障,因此使用线路入口引导者来保护设备。绝缘协调研究确保设备故障和停电最小。下一阶段涉及公共汽车,将电压线连接到一个或多个总线的母线集。开关,断路器和公共汽车的排列会影响变电站的成本和可靠性。对于关键变电站,环形总线,双总线或“断路器和半”设置,可以用于防止单一断路器故障时电源中断。变电站设计必须平衡缩小足迹与维护易于维护。这允许在维护和维修期间将变电站的一部分脱离。较小的工业变电站由于其最小的负载要求而可能具有有限的开关功能。变电站通常采用安全功能来最大程度地减少工人的电气危害,例如将活导体与裸露的设备分开或使用屏幕保持安全距离。最小清除标准根据管辖权或公司要求而有所不同,更高的电压需要更大的许可。接地垫或网格通常安装在地下0.5-0.6米处,以进行接地,以防止意外重新加强电路。变电站围栏通常至少高2米,保护公众和雇员免受电气危害和故意破坏。变电站包含一系列设备,包括开关,保护,控制设备,变压器和断路器,用于中断短路或过载电流。较小的配电站由于容量降低而可能具有更少的组件。分配电路依赖于居住者断路器或保险丝进行保护。变电站通常不是房屋发电机,但可能具有电容器,电压调节器和反应堆。这些设施可以在围栏,地下或特殊用途的建筑物中找到,其中一些高层建筑物具有多个室内变电站。室内变电站经常在城市地区使用,以最大程度地减少变形金刚中的噪声,增强外观或从极端气候条件或污染中的盾牌开关柜。变电站经常在电气设备之间使用母线作为导体。母线可以是铝制管3-6英寸厚的铝管或电线(应变总线)。室外结构包括木杆,晶格金属塔和管状金属变种,钢晶格塔可为传输线和设备提供低成本的支撑,并在外观不关心的区域。低调变电站可以在外观至关重要的郊区指定。室内变电站可以在高电压下采用气体绝缘变电站(GIS)的形式,或在较低电压下使用金属封闭或金属粘合的开关设备。城市和郊区的室内变电站通常在外面结束,以与周围建筑物融合在一起。紧凑的变电站是内置在金属外壳中的户外设施,其设备相互靠近,以最大程度地减少占地面积的尺寸。高压断路器通常会中断变电站设备中的电流流,从而处理正常,过度,异常或继电器触发的方案。AIS(空气绝缘开关设备)和GIS(气体绝缘开关设备)是当导体分离在断路器中时,用于熄灭功率弧的最常见技术。虽然AIS是最便宜的绝缘子,并且最容易修改,但它占据了更多空间,并将设备暴露于外部环境。但是,它需要在地震活性区域进行额外的支撑,并且比GIS发射更多的电磁场和噪声。GIS仅需要AIS所占的土地面积的10-20%,这可能会节省收购成本。为了优化施工过程,可以在利用其功率的地区安装GIS(气体绝缘变电站),从而可节省大量成本。这种接近允许降低电缆和民用建筑成本。此外,GIS可以替换AIS(空气绝缘开关设备),而无需额外的土地面积,如果电源需求增加。此外,GIS设备通常安装在封闭的建筑物中,可保护其免受污染和盐等环境因素的侵害。在维护成本方面,除非用于切换目的,否则GIS变电站几乎不需要维护,在这种情况下,成本可能相对较低甚至零几年。但是,SF6(硫六氟化物)断路器确实需要加热器在极度冷的温度下正常运行。其他选项包括石油绝缘(OCB)和真空绝缘(VCB)变电站,每个变电站都有自己的利益和缺点。隐居者与断路器相似,但可能会更具成本效益,因为它们不需要单独的保护性继电器。它们通常用于配电系统中,并且随着时间的推移超过一定级别时,可以编程为行程。电容器库用于变电站,以平衡电感载荷的当前抽奖与其反应载荷,有助于减少由于电压下降而导致的系统损耗,或者通过导体启用额外的电力传输。较大的变电站通常具有控制,控制和保护设备的控制室,这些设备通常包括保护性继电器,仪表和断路器。石油变压器已汇合了区域,以防止漏油或火灾。变电站内的控制室配备了通信系统,备份电池和数据记录器,可捕获有关变电站操作的详细信息,尤其是在异常事件中,以帮助后期重建。这些控制室由气候控制,以确保该设备的可靠操作。为了解决间歇性可再生能源(如风能或太阳能)的电力激增,需要其他设备。大多数变压器作为热量和噪声而失去了很大一部分的输入,而不管负载如何,铁损耗是恒定的,而铜和辅助损失与电流平方成正比。为了减少噪音,通常在设备周围建造变压器外壳,以后可以在需要时添加。防火墙围绕变压器建造,以阻止火灾蔓延,并带有用于消防车辆的指定路径。变电站维护涉及使用红外扫描和溶解气体分析等方法来预测维护需求和潜在危险,涉及检查,数据收集和日常计划工作。红外技术检测到表明电能转化为热量的热点,而溶解的气体分析有助于确定何时进行机油隔离的变压器需要过滤或更换油,也检测到其他问题。早期的变电站依赖于手动切换和数据收集,但是随着分销网络变得更加复杂,自动化对于从中心点进行监督和控制所必需。电动变电站是现代电网的关键组成部分,可以有效地传输和向消费者发电。已经使用了各种通信方法,包括专用电线,电源线载体,微波无线电,光纤电缆和有线遥控电路,以及标准化协议(例如DNP3,IEC 61850),以及MODBUS以及MODBUS促进设备和主管中心之间的通信。这些变电站设施通常位于主要电力线附近,并用作长距离传输电源的枢纽。电动变电站的设计和布局可能会取决于位置,负载能力和环境考虑因素等因素。某些变电站是地下或专门设计的结构,以最大程度地减少视觉影响和环境破坏。最近对太平洋西北电站的袭击引起了人们对美国电网脆弱性的担忧。在回应中,专家建议采取积极的措施来保护关键基础设施免受潜在威胁。智能网格的开发也在推动变电站设计中的创新,从而在功率传输和分配方面提高了效率和灵活性。这包括使用高级技术,例如实时监控和控制系统,以及为高性能应用设计的更有效的变电站。专家强调了考虑安全性和安全性的设计变电站的重要性,同时还考虑了环境影响,美学和社区关系等因素。有效的变电站设计需要一种多学科的方法,该方法考虑了技术和非技术考虑。总体而言,电动变电站在维持现代电网的可靠性和效率方面起着至关重要的作用。随着电力需求的不断增长,创新的设计和技术对于确保安全有效地传输电力至关重要。注意:我试图从原始文本中保留主要的想法和概念,同时简化了语言并重组结构,以易于阅读。列出的资料是Blume的书(2016年)和Finn的出版物(2019),都重点介绍了电力系统。的研究,但由于缺少目标信息而导致引用错误。这些参考文献突出了变电站计划和电力系统基础知识中的关键概念,这表明它们与理解主题有关。