基础量子力学(BQM):11. 在量子力学的背景下解释算子、状态、特征值和特征函数这些术语(首先针对双态系统,然后扩展到具有连续特征值的系统),并确定物理量的期望值和不确定性。12. 确定给定势阱(例如无限势阱和屏障)中粒子的波函数,并列举其在技术中的应用示例(例如量子点显示器、存储设备)。13. 使用特征函数的正交性并对叠加中的量子系统进行基本分析。14. 讨论量子现象(例如量子叠加、波函数坍缩、量子隧穿和海森堡不确定性原理),并解释它们与我们对现实的感知的冲突。15. 使用氢原子的量子数:n、l、m 确定相应的特征函数(来自给定的表格)并解决相关的简单问题。课程内容 基础(FND) 波的性质 光速 叠加、衍射和干涉 原子和亚原子粒子 狭义相对论(SR) 参考系和伽利略变换 狭义相对论和洛伦兹变换的假设 长度收缩和时间膨胀 闵可夫斯基时空图 解决悖论 相对论动量、动能和能量 基础核物理(BNP) 放射性粒子(𝛼,𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝛾−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) 核裂变和聚变 放射性 质能当量 医学应用和剂量 量子物理(QP) 黑体辐射物理量的量化光电效应康普顿散射和波长对的产生/湮没双缝实验戴维森-杰默实验波粒二象性氢原子(玻尔模型和原子光谱)基础量子力学(BQM)特征值、特征函数和算子两能级系统薛定谔方程和波函数概率(密度)无限和有限势阱(盒子中的粒子)量子谐振子势垒/台阶期望值和不确定性
这是 2022 年春季提供的 ECE 487 修改版课程提案。与 ECE 487 相比,本课程的范围将更具入门性,涵盖的主题更少,但深度更深。其主要目标是为量子信息科学和纳米电子学的高级课程提供概念和定量基础。动机量子信息科学 (QIS) 是一个快速发展的领域,横跨 ECE、物理学、CS 和数学。目前,工业和政府机构正在负责培训下一代“量子素养”科学家。与这种“自上而下”的需求相辅相成的是,越来越多的学生希望参加 QIS 课程并在毕业后进入 QIS 工作岗位。目前,ECE 学生将 PHYS 214 作为他们对量子力学的主要介绍,他们的下一个接触是在 400 级。因此,200 级和 400 级课程在概念和数学上存在很大差距,这使得学生难以学习更高级的材料。我们建议通过提供一门 300 级课程来填补这一空白,该课程取代 ECE 487,并自然流入 QIS 中的三个 400 级主题课程(ECE 498EC:量子信息处理和通信;ECE 498KF:量子光学和设备;ECE 498SB:基本量子系统的操纵)。课程安排本课程设计为在典型学生三年级的第二学期修读,以 PHYS 214 为先修课程。它的直接续集将是量子系统 II(目前作为 ECE 498 SB 提供)。本质上,这门拟议的课程更详细地涵盖了 ECE 498SB 的第一部分。通过在单独的课程中提供这些材料,ECE 498SB 可以专注于更高级的主题。这门 ECE 398 课程还将为 ECE 498EC 奠定基础,帮助学生理解 bra/ket 符号和量子比特,并为 ECE 498KF 奠定基础,帮助学生理解量子谐振子和光物质相互作用。希望这门临时课程最终能永久列为 ECE 305。ECE 中的量子系统子学科将由以下课程序列组成:
自旋电子学领域的进步为技术提供了巨大的资源,使其在经典信息处理(如数据存储)的多个方面得到发展。现在,研究自旋电子学中尚未被广泛探索的量子信息途径至关重要。腔光磁学是一个新兴领域,它描述了磁振子与腔内电磁驻波的相互作用 [1,2]。磁振子与微波 (MW) 光子强烈相互作用,从而使得经典和量子信息处理和存储应用成为可能,这些应用具有相干操控的磁振子以及通信(光纤)和处理(超导量子比特)单元之间的上/下量子转换器 [3,4]。在本次演讲中,我们将从理论上探索经典和量子范围内微波腔中铁磁体的非线性,并评估量子信息的资源,即涨落压缩和二分纠缠 [5]。当包含所有其他磁振子模式时,我们使用非谐振子(Duffing)模型的(半)经典和量子分析对 Kittel 模式的稳态相空间进行分类。随后,我们计算了可蒸馏纠缠的非零界限,以及稳定态下混合磁振子模式二分配置的形成纠缠。在现实条件下,使用钇铁石榴石样品,可以在两个不同的光通道中通过实验获得预测的磁振子纠缠。[1] X. Zhang、C.-L. Zou、L. Jiang 和 HX Tang,Phys. Rev. Lett. 113, 156401 (2014)。[2] Y. Tabuchi、S. Ishino、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,Phys. Rev. Lett. 113, 083603 (2014)。 [3] A. Osada、R. Hisatomi、A. Noguchi、Y. Tabuchi、R. Yamazaki、K. Usami、M. Sadgrove、R. Yalla、M. Nomura 和 Y. Nakamura,物理学家。莱特牧师。 116, 223601 (2016)。 [4] Y. Tabuchi、S. Ishino、A. Noguchi、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,科学 349, 405 (2015)。 [5] M. Elyasi,YM Blanter,GEW Bauer,物理学家。修订版 B 101 (5), 054402 (2020)。
量子物理学的反直觉方面在该理论的早期由著名的思想实验得到了说明,从爱因斯坦和玻尔的光子盒到薛定谔的猫。这些实验的现代版本涉及单个粒子 - 电子、原子或光子 - 如今已经在世界各地的许多实验室中实现。通过在受控环境中操纵这些简单系统,物理学家直接揭示了量子的奇特特性。状态叠加、纠缠和互补性定义了一种可用于信息处理的新型量子逻辑,为应用带来了巨大希望。本书描述了一类已经成熟的思想实验。在广泛且快速发展的研究领域中,我们选择详细分析在高 Q 腔中使用原子和光子进行的实验以及相关实验,涉及陷阱中的离子或光学晶格中的冷原子。在这些看似不同的领域中,相同的基本物理原理在起作用:两级自旋系统与量子谐振子相互作用。我们认为,与抽象的理想化实验相比,对这些真实的“自旋-弹簧”实验的描述更能具体地说明量子概念。尽管后者更易于分析,而且肯定会出现在量子力学的入门课程中,但我们认为,真正的“思想实验”应该成为中级或高级现代量子物理教学的核心。在实验室中进行这些实验的努力很大程度上是受到人们对量子信息在通信和计算中的实际应用的希望所引发的。相反,这个快速扩展的研究领域必将对量子概念的教学和学习产生越来越大的影响。处理真实系统必然涉及描述这些系统与其不可避免的环境之间的相互作用,换句话说,就是讨论松弛和退相干。这些现象由一种形式主义(密度算子或随机蒙特卡罗方法)描述,它取代了基本量子物理学的简单状态描述。掌握这种方法并理解退相干可以深入了解量子的一个重要方面,即它与经典物理学的关系。在量子时代的黎明,人们发明了思想实验来说明量子-经典边界的令人费解的特征。因此,理解这些实验的现代版本也必须解决这个重要问题,这并不奇怪。从描述基本量子实验的简单目标开始
EE599,量子传感简介:推理和信息 学分:4 2023 年春季——周一、周三——时间:4:00-5:50 地点:待定 讲师:庄群涛 办公室:PHE 606(临时办公室 PHE 620) 办公时间:周三 3-4 点 联系信息:qzhuang@usc.edu 助教:待定 办公室:待定 办公时间:待定 联系信息:待定 课程描述 这是一门 4 单元的课程,介绍量子传感的基础知识——推理和信息的量子理论。 量子信息科学与工程在计算、通信和传感方面显示出超越经典性能的巨大希望。特别是,传感是量子技术在近期的实际应用方面可以比传统传感技术更具优势的领域。量子传感与计量研究使用非经典资源来增强各种传感应用的测量性能。作为一个突出的例子,激光干涉引力波天文台 (LIGO) 将非经典压缩光注入其迈克尔逊干涉仪,以超越激光散粒噪声造成的标准量子极限 (SQL)。除了 LIGO,量子计量学还被用于目标检测、显微镜、生物传感和相位跟踪。本课程将介绍量子传感的理论基础,并提供不同实际传感场景中量子优势的典型例子。本课程从基本量子力学开始,包括量子比特系统和以谐振子建模的量子光学系统。然后,我们将介绍经典推理的基础知识,作为随后量子版本的初步知识。最后,我们将讨论一些量子传感的物理系统。本课程将介绍建模和分析量子传感协议的基本工具和方法,并将其应用于实际示例。本课程面向具有复杂线性代数成熟知识的学生,为学生提供量子传感的最新概述,并为他们开始量子传感研究做好准备。相关课程:EE 520 量子信息处理简介、PHYS 513 量子计算应用和 EE 514:量子误差校正学习目标 在本课程结束时,学生将对各种量子传感范式有基本的了解,并获得定量工具来分析量子传感性能。学生将了解纠缠和压缩如何增强传感光学相位,以及多部分纠缠如何导致海森堡误差缩放。
摘要:眼动界面是一种新兴技术,用户只需注视图形用户界面 (GUI) 即可控制它们。然而,使用凝视控制的 GUI 可能是一项艰巨的任务,会导致认知和身体负荷过重以及疲劳。为了应对这些挑战,我们提出了基于生物反馈的自适应人机辅助人机界面 (HA-HCI) 的概念和模型。该模型可以有效和可持续地使用由生理信号(例如凝视数据)控制的计算机 GUI。所提出的模型允许基于阻尼谐振子 (DHO) 模型在人机交互过程中进行分析性人类表现监测和评估。为了测试该模型的有效性,作者从 12 名玩凝视控制计算机游戏的健康志愿者那里获取了凝视跟踪数据,并使用奇偶统计分析对其进行了分析。实验结果表明,所提出的模型有效地描述和解释了注视跟踪性能动态,包括 GUI 控制任务性能的主体变化、长期疲劳和训练效果,以及基于注视跟踪的控制任务期间用户性能的短期恢复。我们还分析了现有的 HCI 和人类性能模型,并开发了现有生理模型的扩展,以开发自适应用户性能感知界面。所提出的 HA-HCI 模型从用户性能的角度描述了人与生理计算系统 (PCS) 之间的交互,结合了与 PCS 的标准 UI 组件交互的性能评估程序,并描述了系统应如何应对生产力 (性能) 的损失。我们通过设计眼控游戏进一步证明了 HA-HCI 模型的适用性。我们还开发了一个基于阻尼谐振的分析用户性能模型,该模型适用于描述基于注视跟踪的 PC 游戏性能的变化。使用奇偶分析测试了该模型的有效性,结果显示存在很强的正相关性。阻尼振荡模型建立的用户个人特征可用于根据玩家的游戏技能和能力对玩家进行分类。实验结果表明,玩家可以分为学习者(阻尼因子为负)和疲劳者(阻尼因子为正)。我们发现振幅和阻尼因子之间存在很强的正相关性,这表明良好的启动者通常疲劳率较高,而启动缓慢的疲劳率较低,甚至可能在比赛中提高其表现。提出的 HA-HCI 模型和分析用户性能模型为开发自适应的人性化 HCI 提供了一个框架,该框架能够监控、分析和提高使用基于生理计算的用户界面的用户的性能。所提出的模型在提高未来人类辅助凝视控制界面系统的可用性方面具有潜在的应用。
创建比常规方法效果更好的量子算法(例如大整数分解)使量子计算成为现代物理学的重点。在物理构建量子计算的各种方法中,Cirac 和 Zoller [ 1 ] 提出的离子阱方法尤为有前景。离子阱的有效性已通过大量实验得到证明,证实了其在实际量子计算中的潜力。离子阱是一种利用电场和/或磁场将带电粒子(离子)限制在特定空间区域的装置。这种限制允许对离子进行操纵和分析。事实上,精确控制单个离子的能力可以实现精确的量子操作,而捕获离子的长相干时间可确保复杂计算期间的稳定性 [ 2 ]。离子阱系统的可扩展性进一步使得构建更大的量子系统成为可能,高保真量子门可最大程度地减少操作错误。此外,离子阱有助于产生纠缠态,这对于量子通信和分布式计算至关重要。在这种情况下,离子阱中的势通常用谐振子来近似,这为分析离子的运动和相互作用提供了一个完善的框架,这对于实现量子门和其他必要的操作至关重要 [3]。阱内离子之间的相互作用(包括光学或电磁谐振器中的离子)可以建模为耦合的谐振子,这对于控制量子态和执行纠缠等量子操作至关重要。这些相互作用可以进入各种耦合状态——弱、强和超强——每一种耦合状态都在提高量子计算机的性能和可扩展性方面发挥着关键作用 [4,5]。在量子计算领域,特别是在囚禁离子系统的哈密顿动力学框架内,对各种量子度量的细致理解至关重要。例如,纠缠熵测量子系统之间的量子相关性,指示共享的信息量。这对于量子算法和协议(如纠错和加密)非常重要。另一个指标是计算复杂度,它评估量子计算所需的资源,包括量子比特的数量和量子电路的深度。这反映了量子操作的难度和算法的效率。高纠缠熵通常会导致计算复杂度增加,因为维持纠缠需要更复杂、更深的电路。另一方面,通过按顺序排列量子门,可以形成高效的量子算法,使量子计算机能够解决超出传统计算机能力的问题 1 。量子门与波函数相互作用的研究很重要;将参考状态 | ψ R ⟩ 转换为目标状态 | ψ T ⟩ 需要应用一个幺正变换 U ,这是通过一系列通用门实现的。优化这些门序列至关重要,因为通往同一目标状态的可能路径是无限的。电路深度,即连续操作的数量,与计算复杂度有关。