量子纳米结构的开发对于在长波长红外(LWIR)窗口中的光电探测器技术的发展至关重要,尤其是成功实施量子点(QDS)具有可能导致该领域的世代相传的潜力[1]。尽管有承诺,但与最先进的技术相比,基于QD的光电探测器的性能仍然缺乏。我们提出了一种创新的解决方案,可以通过利用量子点局部状态到连续体中的谐振状态的吸收来超过当前的基于QD的检测器,即半导体导带中的状态具有增强的量子点区域的概率密度[2]。这种方法利用了此类状态的独特特性,可以大大增强载体提取,从而克服了基于量子点的红外探测器的最关键缺点之一。
我们研究了点缺陷和Hg杂质在碘化抗氢化氢的电子特性中的影响(BI 4 I 4)。在不同温度下退火后我们的传输测量结果表明,BI 4 I 4的电阻率取决于其热史,这表明天然缺陷和杂质的形成可以影响电阻率的温度依赖性。我们的密度功能理论计算表明,二抗和碘反异地和二氮位置空位是主要的天然点缺陷。我们发现,二晶岩在频带边缘引入谐振状态,而碘反异地和二晶的空缺分别导致n型和p型bi 4 i 4 i 4。HG杂质可能在BI替代部位发现,从而产生Bi 4 I 4的P型掺杂。总体而言,我们的发现表明,由于载体的数量和类型的修改以及相关的缺陷(杂质)散射,因此本地点缺陷和杂质的存在可以显着改变电子特性,因此会影响BI 4 I 4的电阻率曲线。我们的结果表明,追求准量子量子材料的电子性质进行微调的可能路线。
摘要:我们研究了由传输矩阵形式主义中微波区域内的二循环(A)和等离子体(P)材料组成的多通道过滤器的透射率。在应用磁场的影响下研究了提出的过滤器的两种构造:(1)包含空气包围的(a / p)N单位细胞的周期性结构,以及(2)引入第二个电端材料(d),该材料(D)作为A(d)的缺陷层(ap)n / 2 /2 / d / d / d / d / d / 2 Struc-2 Struc-2 Struc-2 Struc-2 Struc-2 Struc。我们的发现表明,在周期性的情况下,透射率的谐振状态随数n的数量增加;然而,观察到的蓝色和红移取决于施加的磁场的强度和方向。我们提出了透射系数的轮廓图,这些图显示了入射角对光子带隙的偏移的影响。此外,我们发现缺陷层的引入会产生额外的共振状态,并将中心共振峰合并为共振的小键。此外,我们表明,可以通过增加单位单元格数N并增加插入的缺陷层的宽度来调节共振峰及其位置的数量。我们提出的结构可以使用在微波区域中运行的磁化等离子体材料来设计新型的光子过滤器。
高动力石墨烯托管带有线性色散的无质量电荷载体为电子光学现象提供了有希望的平台。受到介电光学微腔物理学的启发,在这些物理学中,可以通过腔形形状对光子发射特性进行有效调节,因此我们研究了在变形的微型货币圆柱柱中捕获的DIRAC DIRAC费米子谐振状态的相应机制,并将其定向发射。在此类石墨烯设备中,后门电压为模拟不同的有效屈光指标提供了附加的可调参数,从而在边界处提供相应的菲涅尔定律。此外,基于单层和双层石墨烯的腔分别表现出klein-和抗Klein隧道,导致相对于居住时间和导致的空腔状态的发射率明显差异。此外,我们发现各种不同的排放特性,具体取决于源载体进入空腔的位置。将量子机械模拟与光射线跟踪和相应的相空间分析相结合,我们证明了在单层石墨烯系统中部端部中发射的电荷载体的强烈结合,并且可以将其与镜头效应相关联。对于双层石墨烯而言,谐振态的捕获更有效,并且发射特性确实取决于源位置。