近年来,由于分布式发电源(DGS)的连接增加,分配系统中的操作和控制策略发生了变化。带有电力用户和DGS的小型本地网络称为微电网。这些微电网可以独立运行(岛化)或与主网络或其他微电网合作(互连)。相互联系的微电网的一些优势包括减少损失,可靠性的提高以及在断层条件下的分散操作。尽管如此,当微电网以岛形模式运行时,其电气特性会发生变化,因此,功率质量干扰的严重程度可能会增加,以及它们对电子设备(负载和DG设备)的负面影响。本文介绍了有关岛状微电网电力质量干扰的现有研究的全面文献综述,并确定了对此主题的未来研究的最相关需求。详细信息,以比较互连和岛的微电网中干扰水平之间的差异。在谐波干扰的情况下,还分析了不同微电网构型的影响。
在时间范围内不断向后回滚的地方(通常称为“退缩的地平线控制”)。即使MPC控制器按定义依赖于系统模型,模型参数中的某些不确定性或预测外部干扰时的不确定性可以通过状态反馈循环来补偿,该状态反馈循环在随后的最佳最佳控制问题中适应实际系统响应。在优化工业过程(Bordons&Camacho,1998)和交通流量(Ferrara等,2015)中,可以找到许多MPC应用,其中控制器用于应对时间变化的参数和不断发展的边界条件。MPC对于风电场的协调至关重要(Vali等,2019),这会在风向上永久变化。基于MPC的控制器也证实了它们在自动驾驶中的效率,在该自动驾驶中,车辆面临动态障碍(Babu等,2018)。在结构控制中,大多数MPC控制器都依赖于预测外部激发力演化的专门设计的动态模型。Oveisi等。 (2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。 该方法已成功验证了受谐波干扰的压电层压梁的验证。 Wasilewski等人。 (2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。 (2007)。Oveisi等。(2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。该方法已成功验证了受谐波干扰的压电层压梁的验证。Wasilewski等人。(2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。(2007)。在Zelleke和Matsagar(2019)中,开发了一种基于能量的预测控制算法,以抑制受风激发的多局建筑物的振动。Yuen等人提出了一种基于概率的鲁棒性控制方法来减轻暴露于不确定激发的细长建筑物的振动的替代方法。在Takacs和Rohal'-Ilkiv(2014)中测试了五种最佳和次优MPC方法,以确定它们的构成复杂性和在线启动的能力,以减轻配备Piezoce-Ramic Control设备的自由,稳态和短暂振动。作者观察到最佳和次优策略之间的控制绩效没有显着多样性。他们建议在计算上有效的次优方法(例如,最低时间显式或牛顿– Raphson的MPC)可以用于较大维度的系统而不会大大损失性能的系统。