注意力缺陷多动障碍 (ADHD) 是儿童期最常见的精神健康障碍之一。最近一项对 100 多项研究的荟萃分析估计,ADHD 的全球患病率约为 3.4–5.3% ( 1 )。在中国,一项全国精神疾病调查显示,学龄儿童 ADHD 的患病率为 10.2%,而男孩的患病率相对较高 ( 2 )。典型症状是注意力不集中、多动和冲动,这些症状与年龄不相符,并且常常导致他们在以后的生活中学习成绩、工作效率和社交技能受损 ( 3 , 4 )。从实证研究来看,ADHD 的表型在人群中存在差异,可能与大脑发育过程中的遗传和神经因素有关,包括生命早期接触毒素和缺乏社会经济资源 ( 4 )。ADHD 是各种执行功能缺陷的结果; ADHD 的主要特征是缺乏行为抑制,即抑制不相关或干扰信息和冲动的能力,这会导致其他执行功能(如工作记忆和自我调节)进一步受损(3)。尽管行为异常,但在 ADHD 患者中通常可以观察到大脑的结构和功能变化,例如白质体积减少、灰质体积变小、双侧额叶和右扣带皮层局部变薄,以及功能连接减少(5,6)。近年来,脑成像技术(如磁共振成像、MRI)的快速发展使得人们可以更近距离地观察 ADHD 患者的大脑。例如,最近的研究表明,ADHD 的特征是神经网络中存在多种结构和功能异常,包括额顶颞、额小脑甚至前部边缘网络的改变(5-7)。 MRI,尤其是功能性MRI(fMRI),已广泛应用于基础医学和临床研究以及临床实践,以研究大脑的结构和功能。然而,对于儿童,尤其是非常年幼的儿童来说,这是一个巨大的挑战,因为他们必须在扫描期间长时间呆在封闭而黑暗的空间中。他们需要保持静止,因为如果他们移动,成像就不准确。此外,MRI、功能性MRI和静息MRI的成本很高。为了应对这些方法上的限制,功能性近红外光谱(fNIRS)在二十年前被引入科学界。它是一种基于光学的测量神经功能的工具。它的优点是不易受头部运动伪影的影响,并且具有非侵入式采集环境和良好的便携性(8)。fNIRS经常用于探索与ADHD相关的认知的神经基础,例如执行功能,面部表情识别和情绪调节(8-11)。静息状态功能性近红外光谱(rs-fNIRS)成像是一种自然的成像范式,与任务状态 fNIRS 相比具有许多优势(12-14)。rs-fNIRS 操作简单,在临床实践中易于操作,特别是对于难以保持稳定且倾向于移动的儿科患者。rs-fNIRS 技术可以揭示大脑网络在正常发育和精神病理状态方面的变化(12、13、15、16)。
为了为人口提供安全,有效和高质量的药物(制药行业),然后将其产品的批量释放到制药回路中,并采用了内部剂量方法来控制这些产品的质量。本研究包括优化一种方法,用于通过在Abidjan(Ivory Coast)位于Abidjan(Ivory Coastship)的药物工业中常规使用的高性能液体染色体(HPLC)同时测定富洛格葡萄糖(PHG)和三甲基氯糖醇(TPH)。基本的色谱条件是通常用于确定这两个分子的条件:莫比尔阶段:乙腈/水(60/40),固定相(C18 bds hypersil 250 mm * 4.6 mm * 4.6 mm -5 µm),检测波长(265 nm),流量,流量级别,设备,设备和8米,并分配了设备,并在设备上配置了设备,并分配了设备。最小。制药行业还采用了分析物(PHG和TPHG)的制备方法。在设备级别上应用这些不同的参数使得终止色谱图,该色谱图突出了三个色谱峰,分别保留时间(RT)为0.773 min(未识别化合物),2.275 min(PHG)和7.269 min,以分析8分钟,以更好的分析时间为单位。
摘要:用传统质谱法分析核酸时,反离子会造成质量不均匀,限制可分析的 DNA 大小,因此分析起来十分复杂。在这项研究中,我们使用电荷检测质谱法分析兆道尔顿大小的 DNA,从而克服了这一限制。使用正模式电喷雾,我们发现 DNA 质粒的电荷分布截然不同。低电荷群体的电荷像紧凑的 DNA 折纸一样,而高电荷群体的电荷分布范围很广。对于高电荷群体,测量质量与 DNA 序列预期质量之间的偏差始终在 1% 左右。对于低电荷群体,偏差更大且变化更大。高电荷群体归因于随机卷曲配置中的超螺旋质粒,其宽电荷分布是由随机卷曲可以采用的丰富多样的几何形状造成的。高分辨率测量表明,随着电荷的增加,质量分布会略微向低质量方向移动。低电荷群体归因于质粒的浓缩形式。我们认为凝聚形式是由熵捕获引起的,其中随机线圈必须经历几何变化才能挤过泰勒锥并进入电喷雾液滴。对于较大的质粒,剪切(机械破碎)发生在电喷雾期间或电喷雾界面。降低盐浓度可以减少剪切。■简介质谱 (MS) 在核酸表征中发挥着重要作用。1、2 电喷雾和基质辅助激光解吸/电离 (MALDI) 都已用于将 DNA 和 RNA 离子引入气相进行分析,但 MALDI 与飞行时间 (TOF) MS 的组合应用最为广泛。例如,MALDI-TOF 继续用于表征单核苷酸多态性 (SNP),这可提供有关疾病易感性遗传特征的重要信息。对于突变和 SNP 的分析,只需要分析小于 25 nt 的小寡核苷酸(核苷酸)。这是幸运的,因为反离子(通常是 Na +、K + 或 Mg 2+)与 DNA 和 RNA 的高电荷磷酸骨架结合,导致峰宽和灵敏度降低。已经开发出几种方法来脱盐核酸。3、4 然而,由金属离子加合引起的异质性会随着尺寸的增加而增加,并且由于电荷状态分辨率的丧失,常规 MS 不再可能分析兆道尔顿大小的 DNA 和 RNA 物种。另一方面,新型疫苗和基因疗法等新兴疗法携带着大量的遗传物质。基因组完整性对于有效的治疗是必不可少的,对完整基因组的质量测量提供了一种快速而直接的方法来检查缺失和添加。5
摘要:对于细胞周期蛋白依赖性激酶12和13(CDK12和CDK13)的有效抑制剂的合理设计和开发在很大程度上取决于对动态抑制构象的理解,但很难通过常规特征工具来实现。在此,我们整合了赖氨酸反应性分析(LRP)和天然MS(NMS)的结构质谱法(MS)方法,以系统地询问动态分子相互作用和CDK12/CDK13-CYCLIN K(cyck)的整体蛋白质组装,而小型分解物的调节构成。基本结构见解,包括抑制剂结合袋,结合强度,界面分子细节和动态构象变化,可以从LRP和NMS的互补结果中得出。我们发现抑制剂SR-4835结合可以极大地破坏CDK12/CDK13-CYCK相互作用,以异常的变构激活方式,从而为激酶活性抑制提供了一种新颖的替代方法。我们的结果强调了LRP与NMS的巨大潜力,用于评估和合理设计分子水平的有效激酶抑制剂。
摘要:人们普遍认为溶解有机物 (DOM) 可以控制环境中痕量金属的溶解度和反应性。然而,控制金属-DOM 络合的机制仍然不清楚,主要是因为在组成 DOM 的复杂有机化合物混合物中分离和定量金属-有机物种的分析难度很大。本文,我们描述了一种使用液相色谱在线电感耦合等离子体质谱 (LC-ICP-MS) 对有机-金属络合物进行定量分离和元素特异性检测的方法。该方法实施柱后补偿梯度以稳定整个 LC 溶剂梯度中的 ICP-MS 元素响应,从而克服了实现 LC-ICP-MS 定量准确度的主要障碍。通过外部校准和内部标准校正,该方法得到的有机-金属络合物浓度始终在其真实值的 6% 以内,无论络合物的洗脱时间如何。我们利用该方法评估了四种固定相(C18、苯基、酰胺和五氟酰基苯基丙基)对苏旺尼河富里酸和苏旺尼河天然有机质中环境相关痕量金属(Mn、Fe、Co、Ni、Cu、Zn、Cd 和 Pb)回收率和分离率的影响。C18、酰胺和苯基相通常可获得最佳的金属回收率(除 Pb 外,所有金属的回收率均 > 75%),其中苯基相分离极性物质的程度大于 C18 或酰胺相。我们还对氧化和还原土壤中有机结合的 Fe、Cu 和 Ni 进行了分馏,揭示了土壤氧化还原环境中金属-DOM 形态的不同。通过对 DOM 结合金属进行定量分馏,我们的方法为加深对整个环境中金属-有机络合物的机理理解提供了一种手段。■ 引言
Tivadar Lohner 1 、Attila Németh 2 、Zsolt Zolnai 1 、Benjamin Kalas 1 、Alekszej Romanenko 1 、Nguyen Quoc Khánh 1 、Edit Szilágyi 2 、Endre Kótai 2 、Emil Agócs 1 、Zsolt Tóth 3 、Judit Budai 4,5 、Péter Petrik 1,* 、Miklós Fried 1,6 、István Bársony 1 和 † József Gyulai 1
摘要:腺相关病毒(AAV)是一种广泛使用的基因治疗载体。完整包装的基因组是有效治疗的关键质量属性,是必要的。在这项工作中,使用电荷检测质谱法(CDM)来测量从重组AAV(RAAV)向量提取的感兴趣基因组(GOI)的分子量(MW)分布。将测得的MWS与具有不同的Gois,血清型和生产方法(SF9和HEK293细胞系)的RAAV载体的序列质量进行了比较。在大多数情况下,测得的MW略大于序列质量,结果归因于柜台。但是,在少数情况下,测得的MW明显小于序列质量。在这些情况下,基因组截断是差异的唯一合理解释。这些结果表明,CDM对提取的GOI的直接分析提供了一种快速而有力的工具,可以评估基因组完整性中的基因组完整性。■简介
摘要。气溶胶生成技术扩展了气溶胶质谱法(AMS)的实用性,用于对机载颗粒和液滴的化学分析。但是,标准的雾化技术需要相对较大的液体量(例如,几毫升)和限制其效用的高样品质量。在这里,我们报告了需要低至10 µL样品的微型欺凌AMS(MN-AMS)技术的发展和表征,并且可以通过使用同位素标记的内部标准标准标记的Or- ganic和无机物质的纳米含量水平进行定量(34 sO 34 os 34 os)。使用标准SO,该技术的检测极限分别以0.19、0.75和2.2 ng的硫酸盐,硝酸盐和器官确定。这些物种的分析回收率分别为104%,87%和94%。该MN-AMS技术成功地应用了使用微小颗粒物(PM)采样器收集的过滤器和iM骨骼样品,可在未蛋白质的大气表调节平台上部署,例如未蛋式的空中系统(UASS)和绑扎气球系统(TBSS)。从能源部(DOE)南部大平原(SGP)天文台进行的UAS场运动收集的PM样品的化学组成。与通过共同固定的气溶胶化学物种物种(ACSM)测量的原位PM组成进行了很好的比较。此外,MN-AM和离子色谱(IC)很好地同意硫酸盐和硝酸盐的测量
Marigold(Tagetes Erecta L.)是该家族的一种流行的astreaceae植物,通常在包括印度在内的许多国家 /地区都因其装饰性而种植。植物在各种土壤和气候条件下很容易生长,并据报道会损害土壤的线虫种群并间接控制有害的微生物。高性能薄层色谱(HPTLC),以鉴定有两个万寿菊品种Pusa Narangi Gainda(PNG)和Pusa Basanti Gainda(PBG)的植物和叶子中一些重要的生物学活性化合物。使用硅胶薄层色谱法(TLC)板和甲苯和乙酸乙酯 - 甲酸 - 甲酸(T-E-F)(T-E-F)(13:11:2 v/v/v)进行定量分析。。结果表明,叶片中的化合物比流体更多,并且品种PNG比PBG积聚了更多的化合物。十五酸。但是,在品种PBG的流中发现了最大值。咖啡酸和槲皮素,而仅在叶片中仅检测到P-奶酪酸,仅在品种PNG的流中检测到Kaempferol。本报告中产生的信息可能有意义地用于促进对万寿菊作为抗氧化剂,杀虫剂,除草剂等自然来源的研究。
图 2 LDMS 预浓缩/分离过程机理以及 LDMS-CE-TOF/MS 和 TQ/MS 的分析结果。 (a) 通过扫描和 AFMC 对样品溶液中的 DXd 进行预浓缩。 由于双堆积机制,DXd 被精确聚焦并与生物基质分离。 (b) 普通 CE-TQ/MS(未经任何预浓缩,1 μ M DXd)和 LDMS-CE-TQ/MS(1 nM)的提取离子电泳图;灵敏度提高了 1000 倍。 (c) 对与小鼠肝匀浆混合的 10 nM DXd 和 10 nM MMAE 进行 LDMS-CE-TOF/MS 分析。 DXd 和 MMAE 成功聚焦并与代谢物分离。 (d) LDMS-CE-TQ/MS 分析后的峰面积校准曲线。 R 2 超过 0.999,LOQ 为 420 fM(420 zmol,S/N = 10)。(e)2 pM DXd 与 100 pM DXd- d 5 和小鼠肝匀浆混合的 LDMS-CE-TQ/MS 分析。成功检测到 DXd,峰面积 RSD 为 7.1%,定量准确度为 110%。
