1 Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。
摘要:碳水化合物是本质上最丰富的生物分子,特别是在几乎所有植物和真菌中都存在多糖。由于其组成多样性,聚糖分析仍然具有挑战性。与其他生物分子相比,碳水化合物的高通量分析尚未开发。为了解决分析科学中的这一差距,我们开发了一种多重,高通量和定量方法,用于食品中的多糖分析。具体而言,使用非酶促化学消化过程将多糖解散,然后使用高性能液相色谱 - Quadru-飞机飞行时间质谱法(HPLC-QTOF-MS)进行寡糖手指。基于产生的寡糖的丰富性,进行了无标签的相对定量和绝对定量。方法验证包括评估一系列多糖标准和早餐谷物标准参考材料的恢复。9种多糖(淀粉,纤维素,β-葡聚糖,曼南,Galactan,Arabinan,xylan,xyloglucan,chitin)通过足够的准确性(5-25%偏差)和高可重现性成功地定量(2-15%CV)。此外,该方法还用于识别和定量多种食品样品集中的多糖。使用外部校准曲线获得了苹果和洋葱的9种多糖的绝对浓度,其中某些样品在某些样品中观察到了各种差异。■简介本研究中开发的方法将提供互补的多糖级信息,以加深我们对饮食多糖,肠道微生物群落和人类健康的相互作用的理解。
ISO-10993中概述了《医疗设备萃取物和浸润器的监管指南》,“医疗设备的生物评估”,第12、17和18部分,特别是1-3。可提取的测试方法通常提供两个(通常是分开的)目的,并量身定制以适合该特定目的。方法可以设计用于以半定量非目标方式对提取物进行一般筛选。或,可以使用针对特定的“靶向”化学实体评估所选方法性能标准的目标定量方法。尽管在所有情况下都需要高性能的方法,但在所讨论的特定测试文章(和这些物种的定量)中,预期在内源性水平上存在的方法性能与特定的可提取物种仅在目标方法中有目的地建立。筛选方法(非目标)仍然可以使用标准来验证色谱,方法性能,执行半定量,系统适用性(以及更多)。但是,理想地设计了可靠的筛选方法,无论其性质如何,或在进行测试时的任何矩阵中都使用。并且它们旨在最大程度地减少检测极限(与药物药物测定方法不同,在该方法通常不是问题的情况下)。
摘要:随机电报噪声 (RTN) 通常被认为是一种麻烦,或者更确切地说,是微型半导体器件的关键可靠性挑战。然而,这种情况正在逐渐改变,因为最近的研究表明,基于 RTN 信号固有随机性的新兴应用出现在最先进的技术中,包括真正的随机数生成器和物联网硬件安全。现在,人们正在积极探索合适的材料平台和设备架构,以将这些技术从萌芽阶段带入实际应用。一个关键的挑战是设计出可以可靠地用于确定性地创建用于 RTN 生成的局部缺陷的材料系统。为了实现这一目标,我们结合传导原子力显微镜缺陷谱和统计因子隐马尔可夫模型分析,在纳米级研究了嵌入 HfO 2 堆栈的 Au 纳米晶体 (Au-NC) 中的 RTN。在堆栈上施加电压后,Au-NC 周围的非对称电场会增强。这反过来又导致当电压施加到堆栈以诱导电介质击穿时,优先在 Au-NC 附近的 HfO 2 中产生原子缺陷。由于 RTN 是由紧密间隔的原子缺陷之间的各种静电相互作用产生的,因此 Au-NC HfO 2 材料系统表现出产生 RTN 信号的固有能力。我们的研究结果还强调,多个缺陷的空间限制以及由此产生的缺陷之间的静电相互作用提供了一个动态环境,除了标准的两级 RTN 信号之外,还会导致许多复杂的 RTN 模式。在纳米尺度上获得的见解可用于优化金属纳米晶体嵌入的高 κ 堆栈和电路,以按需生成 RTN 以满足新兴随机数应用的需求。关键词:传导 AFM、电介质击穿、金属纳米晶体、氧化物缺陷、随机电报噪声
摘要 计算机断层扫描 (CT) 脑成像通常用于支持创伤性脑损伤 (TBI) 患者的临床决策。然而,只有 7% 的扫描显示 TBI 的证据。其余 93% 的扫描会给医疗保健系统带来巨大的成本,并给患者带来辐射风险。可能有更好的策略来确定哪些患者,特别是轻度 TBI 患者,有病情恶化的风险并需要住院治疗。我们引入了一种血清液体活检,该活检利用衰减全反射 (ATR)-傅里叶变换红外 (FTIR) 光谱和机器学习算法作为决策工具,以确定哪些轻度 TBI 患者最有可能出现阳性 CT 扫描。血清样本来自获得 TBI 并参加 CENTER-TBI 的患者 (n = 298) 和无症状对照患者 (n = 87)。将受伤患者(所有严重程度)与无受伤对照组进行分层。对轻度 TBI 患者群进行进一步检查,将至少有一处 CT 异常的患者与无 CT 异常的患者进行分层。该测试在对轻度受伤患者与无受伤对照组进行分类时表现异常出色(敏感性 = 96.4%,特异性 = 98.0%),并且在对至少有一处 CT 异常的轻度患者与无 CT 异常的患者进行分层时也提供了 80.2% 的敏感性。所提供的结果表明,该测试能够识别五分之四的 CT 异常,并显示出作为轻度 TBI 患者 CT 优先分类工具的巨大潜力。
摘要:锂镍锰钴(LiNi x Co y Mn z ,NCM)复合材料在先进电子器件和材料/合金中的应用十分广泛,其杂质成分分析是评价其质量的重要领域。本文提出了采用电感耦合等离子体发射光谱法(ICP-OES)测定NCM复合材料中硫的方法。研究了Si、Fe、Mn、Mg、Ca、Ni、Cr及主基体共存杂质的影响。在优化的条件下,硫在0~10 mg/L(±0.9999)范围内呈现良好的线性关系,加标回收率为98.11~102.07%,RSD为3.69%,共存杂质含量低于5.0%对硫的测定无明显干扰。该方法可以作为NCM复合材料中痕量硫含量的可靠测定。
仅用于一般实验室。不适用于诊断程序。©2022 Thermo Fisher Scientific Inc.保留所有权利。Clinmass和食谱是食谱化学品 +仪器GmbH的商标。元素科学是元素科学的商标。所有其他商标都是Thermo Fisher Scientific及其子公司的财产。TN000598-EN 0322S
摘要。– 目的:口腔液被证明是法医环境中评估药物消费的有效基质。最近,与新型精神活性物质有关的中毒事件数量不断增加,引起了科学界的关注。为此,开发并验证了检测和量化口腔液中 NPS 的不同分析方法,其中大多数基于连字符技术。材料和方法:在多学科研究数据库中进行了广泛搜索,单独或组合使用“新型精神活性物质”、“口腔液”、“毒理学分析”、“分析方法”、“靶向方法”、“HPLC-MS/MS”、“GC-MS”、“GC-MS/MS”作为搜索字符串。考虑了 2017 年至 2021 年期间发表的所有研究文章。结果:文献中报道了检测和量化口腔液中 NPS 的不同色谱-光谱法。所研究的 NPS 类别包括合成大麻素、合成卡西酮、新型苯二氮卓类、合成阿片类、芬太尼类似物、色胺和苯乙胺。最常用的技术是 HPLC-MS/MS,因为它灵敏度高、通量高。对于合成大麻素,GC-MS 技术是首选,尽管开发了不同的 HPLC-MS/MS 方法。此外,LC-HRMS 技术用于开发检测新型合成阿片类和芬太尼类似物的分析方法。结论:口腔液作为评估药物暴露的有效基质,其分析兴趣日益增加。联用技术被证明可有效检测口腔液中的 NPS。最合适的技术是 HPLC-MS/MS,因为它具有灵敏度高,并且能够在一次分析中涵盖不同类别的物质。
3.4 液相色谱-高分辨率质谱法对富马酸比索洛尔杂质进行分析:使用合成反应矩阵和一般未知物比较筛选的靶向和非靶向方法的组合................................................................................................................................ 61
我们使用拓扑绝缘子(TI)BI 2 TE 3和高温超导体(HTSC)混合装置来研究Ti中接近性诱导的超导性(PS)。应用超导体YBA 2 Cu 3 O 7-δ(YBCO)使我们能够访问该现象的更高温度和能量尺度。杂交设备中的HTSC表现出pseudogap状态的T> T C状态,该状态转化为t 转化过程已反映在Ti收集的拉曼光谱中。 互补的电荷运输实验表明,Ti中接近性诱导的超导间隙的出现以及HTSC中降低的超导间隙的出现,但没有伪模的签名。 这使我们得出结论,拉曼光谱揭示了伪PSEUDOGAP状态的形成,但无法区分Ti中的接近性诱导的超导状态与HTSC中以减少间隙为特征的HTSC中的超导状态。 我们的实验结果表明,拉曼光谱是对经典电荷运输实验的补充技术,并且是研究BI 2 TE 3中接近性诱导的超导性的强大工具。转化过程已反映在Ti收集的拉曼光谱中。互补的电荷运输实验表明,Ti中接近性诱导的超导间隙的出现以及HTSC中降低的超导间隙的出现,但没有伪模的签名。这使我们得出结论,拉曼光谱揭示了伪PSEUDOGAP状态的形成,但无法区分Ti中的接近性诱导的超导状态与HTSC中以减少间隙为特征的HTSC中的超导状态。我们的实验结果表明,拉曼光谱是对经典电荷运输实验的补充技术,并且是研究BI 2 TE 3中接近性诱导的超导性的强大工具。
