DC Water 的无铅 DC 计划旨在实现一项雄心勃勃的目标,即到 2030 年公平地拆除所有铅服务线。自 2019 年以来,我们更多地了解了整个特区的铅服务线位置、如何高效地完成全区范围内的铅服务线拆除,以及与客户就更换计划进行沟通的有效方式。我们利用这些经验教训修订了 2021 年铅服务线更换计划,以确保我们在 2030 年前拆除和更换特区内的每一条铅服务线。在该计划中,我们描述了最近的现场调查和更换工作的结果如何促使我们重新评估原始服务线清单的准确性。我们仔细检查了用于制定初始清单的所有数据源,并将特区内的所有服务线分类为已验证的铅服务线、疑似铅服务线、无信息(没有管道材料记录的服务线)、疑似非铅服务线和已验证的非铅服务线。此更新的库存分类系统为 DC Water 在估计特区内剩余的铅服务线时提供了更高的置信度。为了最终确定可疑的服务线是铅还是非铅,我们正在调查和验证任何被归类为可疑铅、可疑非铅或没有信息的房屋的服务线材料。在我们将要调查的房屋中,我们估计其中大约有 42,000 所房屋需要更换。随着我们在现场了解更多信息,我们将更新清单并在 Lead Free DC 网站上实时与公众分享。
FD-SOI 技术(在欧洲发明、获得完整专利和开发,非常适合加强欧洲的工业实力)得到了众多欧盟合作项目框架(ENIAC、ECSEL、KDT、CHIPS)的支持,涉及许多学术和工业合作伙伴。这些项目为创建强大而全面的生态系统做出了巨大贡献。大部分 FD-SOI 价值链(晶圆制造、建模、芯片设计和工艺等)由欧洲掌握和托管。Soitec 是 FD-SOI 衬底晶圆制造领域的全球领导者,意法半导体 (ST) 和 GlobalFoundries (GF) 使用 Soitec 的晶圆在欧洲加工 28nm 和 22nm FD-SOI 集成电路。高通、谷歌、三星、索尼、博世、Nordic、NXP 等全球领先公司和
简介 . 抗菌素耐药性是一个全球公共卫生问题,可导致治疗失败、死亡率和与泌尿道感染相关的发病率增加。目的 . 评估 T. Mosneaga 临床医院收集的尿液培养结果,重点确定微生物谱和抗生素耐药性的演变。材料和方法 . 进行了一项回顾性研究,分析了 2018 年至 2021 年期间住院患者收集的尿液培养结果。共纳入 22,076 次尿液培养。尿液培养是在住院后的前 48 小时内收集的。结果 . 在总共 22,076 个尿液样本中,5,500 个对病原体呈阳性(24.9%)。革兰氏阴性微生物(肠杆菌科 - 60%)
在核反应实验中,测量的衰变能谱可以洞悉衰变系统的壳结构。然而,由于探测器分辨率和接受效应,从测量中提取底层物理信息具有挑战性。Richardson-Lucy (RL) 算法是一种常用于光学的去模糊方法,已被证明是一种成功的图像恢复技术,该算法被应用于我们的实验核物理数据。该方法的唯一输入是观察到的能谱和探测器的响应矩阵(也称为传输矩阵)。我们证明该技术可以帮助从测量的衰变能谱中获取有关粒子非结合系统壳结构的信息,而这些信息无法通过卡方拟合等传统方法立即获取。出于类似的目的,我们开发了一个机器学习模型,该模型使用深度神经网络 (DNN) 分类器从测量的衰变能谱中识别共振状态。我们在模拟数据和实验测量中测试了这两种方法的性能。然后,我们将这两种算法应用于通过不变质谱测量的 26 O → 24 O + n + n 衰变能谱。使用 RL 算法对测量的衰变能谱进行去模糊处理后恢复的共振状态与 DNN 分类器发现的状态一致。去模糊处理和 DNN 方法均表明 26 O 的原始衰变能谱在约 0.15 MeV、1.50 MeV 和 5.00 MeV 处出现三个峰,半宽分别为 0.29 MeV、0.80 MeV 和 1.85 MeV。
• LC-MS 和 GC-MS 用于极性和非极性小分子分析(低分辨率) • LC-MS/MS 用于肽/蛋白质表征;测序;PTM;(高分辨率 ± 3ppm) • LC-MS/MS 用于非靶向代谢组学/脂质组学 • LC-MS/MS 用于定量靶向代谢组学(例如定制分析、PK/PD 研究) • MALDI 用于蛋白质组学和聚合物 • MALDI IMS 用于空间代谢组学/脂质组学
在研究(电)化学反应时,电化学和光谱技术的组合会产生互补信息。电化学技术提供了精确的定量,并具有以较低零件(ppm,mg/l)浓度范围或涉及亚单层覆盖率的表面过程分析解决方案的可能性。电化学方法的缺点是它们为目标反应提供了有限的特异性。信息是一维的,因为研究人员可以在给定的潜力下监视电子的流量,但是很难将当前信号归因于单个过程。光谱法(如拉曼光谱法)提供了分子信息,并有可能监测化学过程的发生。
临床实验室”代表IFCC科学部和希腊临床化学学会 - 临床生物化学,我们很高兴宣布共同的临床质谱大会大会出于诊断目的。该活动的国会标题是“质谱符合临床实验室”。该会议将作为混合(实物和虚拟)举行,促进不能亲自参加的同事。本事件旨在强调,自动化和稳健的质谱法正在成为医疗实验室中的宝贵资产和可行技术,这不仅是针对小分子,而且对于代谢物和蛋白质/蛋白质/蛋白质成型型测试,以满足必要精度药物应用的临床需求。国会组织者的目标是向实验室专业人员,学员和临床医生告知医疗实验室中质谱的优势和挑战,并特别强调了测试结果的标准化和质量。除了传统的实验室开发应用外,还将讨论新的商业应用和技术开发。IFCC SD和GSCC-CB的科学和组织委员会创建了一个综合科学计划,该计划侧重于临床质谱。它包括基本,中间和高级应用程序。专家和最终用户将分享他们的知识和经验,特别关注最新的发展质谱法进行医学测试。该活动定于2024年11月8日至10日在希腊雅典举行,由GSCC -CB主持。这次互动会议将使参与者能够为自己的想法做出贡献,并帮助使用质谱法塑造临床测试的未来。会议将为与该领域的专家和最终用户建立联系,并开发新的和进步的现有知识和技能。注册是开放的:质谱符合临床实验室(https://eekx-kb.gr/22pskx/)Christa Cobbaert,IFCC SD主席Hubert Vesper,IFCC SD Konstantinos Makris成员,IFCC SD