• 如果您已经拥有代理投票,您将收到一张确认这一点的投票卡。 • 如果您无法前往投票站并且不想通过邮寄投票,您可能能够通过代理投票。这意味着允许您信任的人代表您投票。 • 如果您想通过代理投票,您需要填写申请表并将其发送到以下地址,并于 2025 年 1 月 29 日星期三下午 5 点前到达以下地址。您可以在线申请:www.gov.uk/apply-proxy-vote • 您也可以从南牛津郡议会的网站获取邮寄和代理投票申请表:www.southoxon.gov.uk/elections,或者您可以致电我们的热线 01235 422528 或发送电子邮件至elections@southandvale.gov.uk 索取申请表。 如何了解更多信息
显着性测试旨在确定对人口分布的提议是事实还是没有观察到。但是,传统的意义测试通常需要得出测试统计的分布,但未能处理复杂的非线性关系。在本文中,我们建议对称为N FBST的神经网络进行完整的贝叶斯象征测试,以超越传统方法的关系表征的限制。贝叶斯神经网络被用来适合非线性和多维关系的较小错误,并通过提出证据价值来避免严格的理论推导。此外,N FBST不仅可以测试全局意义,还可以测试本地和实例的意义,以前的测试方法不关注。更重要的是,n fbst是一个可以根据所选度量进行扩展的一般框架,例如gradn fbst,lrp- n fbst,deeplift- n fbst,lime-n fbst。进行了模拟和真实数据的一系列实验,以显示我们方法的优势。
最近预估计的视觉语言(VLP)模型已成为许多下游任务的骨干,但它们被用作冷冻模型而无需学习。提示学习是一种通过在文本编码器的输入中添加可学习的上下文向量来改善预训练的VLP模型的方法。在下游任务的几次学习方案中,MLE训练可以导致上下文向量在训练数据中拟合占主导地位的图像特征。这种过度适应的可能会损害概括能力,尤其是在训练和测试数据集之间的分布变化的情况下。本文介绍了基于贝叶斯的迅速学习的框架,这可以减轻几乎没有射击的学习应用程序中的过度问题,并提高提示在看不见的情况下的适应性。具体来说,建模与数据相关的先验增强了文本特征的适应性,可用于可见的和看不见的图像特征,并在其之间取决于它们之间的折衷。基于贝叶斯框架,我们在估计目标后分布中利用了Wasserstein等级流,这使我们的提示可以灵活地捕获图像特征的复杂模式。我们通过与现有方法相比显示出统计学上显着的性能改善,证明了在基准数据集上的方法的有效性。该代码可在https://github.com/youngjae-cho/app上找到。
本手稿提出了一种新型的贝叶斯主动学习可靠性方法,该方法同时整合了贝叶斯故障概率估计和贝叶斯决策理论多点富集过程。首先,提出了一种称为综合边缘概率(IMP)的认知不确定性度量,以作为Kriging估计的失败概率的平均绝对偏差的上限。然后,遵守贝叶斯决策理论,定义了一种称为多点逐步减少(MSMR)的外观学习函数,以量化通过在预期中添加一批新样本来量化IMP的可能减少。基于MSMR的多点富集过程的成本效率实现由三个关键的解决方法进行:(a)由于内部积分的分析性障碍性,MSMR将其减少到单个积分。(b)MSMR中的其余单个积分是通过数值截断的数值计算的。(c)最大化MSMR的启发式治疗方法是根据迭代迅速选择最佳下一个点的一批最佳点,其中使用规定或自适应方案来指定批量大小。在两个基准示例和两个动态可靠性问题上测试了所提出的方法。结果表明,MSMR中的自适应方案在计算资源消耗和整体计算时间之间取得了良好的平衡。然后,根据故障概率估计的准确性,迭代次数以及性能函数评估的数量,尤其是在复杂的动态可靠性问题中,MSMR的表现相当优于现有的倾斜功能和并行化策略。
添加剂制造(AM)技术由于能够快速生产,原型和自定义设计而越来越多地在各种应用领域中采用。AM技术在核材料方面有明显的机会,包括加速制造过程和成本降低。在爱达荷州国家实验室(INL)的多个物理学面向对象的模拟环境(MOOSE)中,正在开发AM过程的高层建模和模拟(M&S),以支持AM过程优化并提供对所涉及的各种物理相互作用的基本了解。在本文中,我们采用贝叶斯逆不确定性定量(UQ)来量化AM基于驼鹿的熔体模型中的输入不确定性。逆UQ是成型量化输入不确定性的过程,同时保持模型预测与测量数据一致。逆UQ过程考虑了模型,代码和数据的不可能,而同时表征输入参数中不确定的分布,而不是仅提供最佳位点估计值。我们使用熔体池几何形状(长度和深度)的测量数据来量化多个熔体池模型参数中的不确定性。模拟结果与实验数据的一致性提高了。可以使用所得参数不确定性来代替未来的不确定性,敏感性和验证研究中的专家意见。
摘要 - 神经网络(NNS)已经证明了它们在从计算机视觉到自然语言处理的各个领域中的潜力。在各种NN中,二维(2D)和三维(3D)卷积神经网络(CNN)在广泛的应用中已被广泛采用,例如图像分类和视频识别,因为它们在提取2D和3D特征方面具有出色的功能。但是,标准的2D和3D CNN无法捕获其模型不确定性,这对于包括医疗保健和自动驾驶在内的许多关键安全应用至关重要。相比之下,作为CNN的一种变体,贝叶斯卷积神经网络(贝叶斯)(贝叶斯)已经证明了它们通过数学基础在预测中表达不确定性的能力。尽管如此,由于采样和随后的前向通过多次通过了整个网络,因此贝内斯科的计算要求并未在工业实践中广泛使用。结果,与标准CNN相比,这些过程显着增加了计算和内存消耗量。本文提出了一种新型的基于FPGA的硬件体系结构,以加速通过Monte Carlo辍学推断的2D和3D贝内斯科。与其他最先进的加速器相比,贝内斯科的设计可以达到高达高达能量效率的4倍,而计算效率的9倍。考虑部分贝叶斯推断,提出了一个自动框架,以探索硬件和算法性能之间的权衡。进行了大量实验,以证明我们提出的框架可以有效地发现设计空间中的最佳点。
由于复制越来越多的研究的复制,生物科学中的典型统计实践已被越来越受到质疑,其中许多研究被无效假设测试设计和P值解释的相对难度所困扰。贝叶斯推论代表了一种根本不同的假设检验方法,由于其易于解释和对先前假设的明确声明,因此获得了新的兴趣作为潜在的替代或对传统无效假设检验的补充。贝叶斯模型在数学上比等效频繁的方法更为复杂,这些方法历来将应用程序限制在简化的分析案例中。但是,随着计算能力的指数增加,概率分布采样工具的出现现在可以在任何数据分布下快速而强大的推断。在这里,我们介绍了在大鼠电生理和计算建模数据中使用贝叶斯推断在神经科学研究中使用贝叶斯推断的实用教程。我们首先是对贝叶斯规则和推理的直观讨论,然后使用来自各种神经科学研究的数据制定基于贝叶斯的回归和ANOVA模型。我们展示了贝叶斯推论如何导致对数据的易于解释分析,同时提供开源工具箱来促进贝叶斯工具的使用。
神经生物学中当前的观点量介绍了一群不同的研究者的最新思想,位于可塑性和记忆力研究的最前沿。这些评论的共同主题是行为。也就是说,每个人都使用最新工具检查了不同空间分析的可塑性和记忆的特定方面,但在行为的背景下进行了。除了探索大脑变化与由此产生的行为之间的关系外,行为对受试者的实验还允许检查大脑区域之间的相互作用以及情境和行为状态在可塑性中的作用。在行为动物中的工作还有助于促进模型之间的翻译,包括斑马鱼,果蝇,啮齿动物和人类的可塑性研究。
除了全县使用的标准措施来确保公共设施和基础设施能够为新开发项目服务之外,该计划还包括几项措施来跟踪开发、公园、交通等计划建议的实施情况。这些措施包括根据在制定该计划时进行的交通分析,对贝塞斯达市中心的总开发面积设定为 3240 万平方英尺,包括现有和已批准的新开发项目。一旦总开发面积达到上限的 200 万平方英尺(约 10 栋 200 套公寓楼),该计划建议规划部门和规划委员会与县议会核实,看看是否需要其他建议来帮助实施公共设施和基础设施建议,例如新公园和交通相关的改进。