SARS-CoV-2 可通过胞吞吸收感染细胞,这一过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种方法对羟氯喹口服方案效果不佳,因为脱靶效应伴有显著毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加靶点处的药物浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
氢是绝缘子中的大量杂质,可以在半导体行业的生长和各种处理步骤中轻松引入。通过与不同的晶体缺陷反应,H可以钝化它们或形成新型的Elective elective Himctive H活性相关的复合物。[1,2]这些缺陷可能明显影响了微电子设备的电性能,对它们的控制是现代微电子的重要任务。在文献中,致力于研究h h h中与H相关缺陷的电和光学特性的研究相对较少。根据理论,孤立的间质h充当两性杂质,也可能是绝缘子中负电荷的来源。[3 - 5]通过使用第一个原理总计计算,kilic和Zunger [3]降低了间隙H应该根据Fermi水平在绝缘子带中的位置引入浅或深度状态。作者通过暗示存在H的过渡水平(þ /)的存在,应位于真空水平以下约3.0 0.4 eV。该级别的位置定义了绝缘子中孤立H的电荷状态。h应该是负(积极的)。浅氢状态也可以出现在绝缘体的带隙中。过渡级别的存在
尽管DNA骨架的负电荷,但酸性残基(ASP/GLU)通常参与基础读数,对胞嘧啶的偏爱很偏爱。实际上,在已解决的DNA/蛋白质结构中,几乎完全通过ASP/GLU通过直接的氢键识别胞嘧啶,而与此同时,腺嘌呤,无论其氨基群如何,都没有显示出ASP/GLU的倾向。在这里,我们分析了ASP/GLU使用所选转录因子的经典和缩写模拟对序列特异性DNA结合的贡献,并发现它受骨链磷酸盐的排斥与有吸引力的相互作用与胞质相互作用之间的细分平衡。特别是,ASP/Glu降低了非循环位点的属性,因此充当了防止脱靶结合的负选择器。在含胞嘧啶的位点,有利的贡献不仅依赖于单个H键的形成,而且通常需要由多个细胞穿刺产生的阳性势能,而靶位点中观察到的过量的胞嘧啶在靶位点中始终如一。最后,我们表明,ASP/GLU对胞嘧啶而不是腺嘌呤的偏好是腺嘌呤咪唑环的排斥以及嘌呤 - 嘌呤二核苷酸采用BII构象的趋势。
目的:结肠癌的化学疗法需要改善,以减轻与细胞毒性药物相关的严重不良反应(AE)。这项研究的目的是开发一种具有实用应用潜力的新型靶向药物输送系统(TDD)。方法:TDD是通过在白蛋白纳米颗粒(NP)中加载多西他赛(DTX)构建的,这些纳米颗粒(NPS)用核糖素靶向的适体(AS1411)进行了功能化。结果:TDD(APT-NPS-DTX)的平均大小为62 nm,负电荷为-31.2 mV。dtx从白蛋白NP中释放出典型的持续发行轮廓。通过表达核仁素的CT26结肠癌细胞与对照细胞相比,优先摄入适体引导的NP。体外细胞毒性研究表明,APT-NPS-DTX显着增强了CT26结肠癌细胞的杀戮。重要的是,与未靶向的药物递送相比,APT-NPS-DTX治疗sig sig sig sig可提高抗肿瘤功效,并延长了CT26含有小鼠的存活,而不会提高系统性毒性。结论:结果表明APT-NPS-DTX在靶向治疗结肠癌方面具有潜力。关键字:适体,纳米颗粒,结肠癌,针对药物输送系统
摘要:纳米颗粒(1至100 nm)具有独特的物理和化学特性,这使其适合在广泛的科学和技术领域中应用。尤其是金属纳米颗粒(MNP)研究表现出有希望的抗菌活性,为新应用铺平了道路。然而,尽管对其抗菌潜力进行了一些研究,但抗菌机制仍未得到很好的确定。纳米颗粒的生物合成使用植物提取物或微生物,已显示出令人鼓舞的结果,作为化学合成的绿色替代品。但是,关于其背后机制的知识既不是丰富的也不是共识。在这篇综述中,收集了有关MNP的抗菌和生物合成机制的研究,并提出了基于证据的机制。第一个揭示了内部金属离子酶促干扰的重要性,而第二个则说明了还原和负电荷分子的作用。此外,总结了和分析了最近研究(2018-2022)对使用微生物的MNP的生物合成的主要结果,并证明了使用细菌旨在测试其抗药性潜在的细菌合成的银纳米颗粒研究的流行。最后,应用于文化遗产材料的MNP的研究的提要显示了其未来在保存中的使用。
摘要:定期间隔短的短膜重复(CRISPR)和相关的CAS核酸酶(CAS9)是一种尖端的基因组编辑技术,它通过使用短RNA分子来指定靶向DNA序列,通过使用短RNA分子,帮助内核酶Cas9在负责遗传性疾病的基因修复中的核酸内切酶Cas9。但是,应用此技术的主要问题是开发有效的CRISPR/CAS9传递系统。共识依赖于用纳米颗粒(NP)代表的非病毒输送系统的使用。壳聚糖是一种安全的生物聚合物,用于几种生物医学应用,尤其是基因递送的NP。的确,它在基因递送系统的背景下显示了几个优点,例如,其骨架上有带正电荷的氨基组的存在可以与带负电荷的核酸形成稳定的纳米复合物建立静电相互作用。但是,其主要局限性包括生理pH值的溶解度差和有限的缓冲能力,可以通过功能化其化学结构来克服。本评论对基于壳聚糖的CRISPR/CAS9传递系统的不同方法进行了批判性分析以及未来发展的建议。
我研究了半导体中分离的氢,除了开发新的实验技术以做到这一点。活动/项目包括:“ Beo中的Muonium State的微波研究”,“ GAAS负电荷的Muonium上的光电子化光谱”; “通过光激发哑光自旋光谱探测的ZnSE中的受体氢状态”; “中性和磁磁性muonium作为β-GA2O3中分离氢的类似物”; “研究金红石,解剖酶和布鲁克特二氧化钛的MU/H样状态”; “探测磁性,金属到半导体过渡的金属以及H中H中H的性质”; “研究透明导电氧化物中的氢动力学和稳定性”; “氢杂质在CIGS和CZTS化合物中的作用和行为(下一代太阳能电池材料)”; “描述锡氏合金中H杂质的早期历史”; “开发激发态(MUSES)技术用于半导体的MUON光谱”; “研究MU(类似于H的)国家,包括停止位点,动力学以及碳化硅中的供体和受体水平”;“ GE中的Muonium-Photocarrier相互作用”; GAAS中的“ Muonium-photoionization和Muonium-Photocarrier相互作用”; “旋转北极星候选材料的调查”
SARS-CoV-2 可通过内吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。在这里,我们描述了一种溶酶体靶向的、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒内吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100 – 150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2 WA1 及其 Omicron 变体。细胞器靶向递送是抑制病毒感染的有效方法。
SARS-CoV-2 可通过胞吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
更广泛的上下文稳定和成本效率的Li-Metal电池(四肢)对于非额外的商业电池能量密度不适。然而,使用常规电解质时,Li-i-Metal阳极的实施会阻碍低周期的寿命和安全性。尤其是,在骑自行车期间发生电子活动“死”锂和树突的形成。先前的研究表明,富含氟的界面层化学对于Li-o-亚属阳极的稳定很重要,当使用高分氟化溶剂和/或盐时,这可以实现。在本文中,我们引入了一种替代方法,该方法利用带正电的氟化阳离子和带负电荷的Li-metal阳极之间的静电吸引力,在电极表面附近产生了大量的氟化物种,在电解质中具有非常低的添加剂(B 0.1 wt%)。结果,形成了富含氟的富含荧光界面层,从而实现了密集的Li金属的无树枝沉积。通常,我们提出了一种通过静电吸引力将所需的化学物种运送到电池阳极的策略,同时使用微量的添加剂,因此可以显着降低实施高能量电池的成本和环境足迹。