本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 — 使用脑信号进行运动运动解码 (MKD) 对于开发用于康复或假肢设备的脑机接口 (BCI) 系统至关重要。表面脑电图 (EEG) 信号已广泛应用于 MKD。然而,来自皮质源的运动解码很少被探索。在这项工作中,已经探索了使用 EEG 皮质源信号进行手部运动解码以执行抓取和举起任务的可行性。特别是,利用了运动前 EEG 片段。提出了一种基于残差卷积神经网络 (CNN) - 长短期记忆 (LSTM) 的运动解码模型,该模型利用运动前大脑活动中存在的运动神经信息。在运动开始前 50 毫秒的各种 EEG 窗口用于手部运动解码。实际和预测手部运动之间的相关值 (CV) 被用作源域和传感器域的性能指标。在传感器和源域比较了所提出的深度学习模型的性能。结果证明了使用运动前 EEG 皮质源数据进行手部运动学解码的可行性。