在线定量分析工业生产中的反应气体或排气性非常重要,可以提高生产能力和过程。使用定量数学模型与机器学习的线性回归算法相结合,开发了一种用于在线定量分析反应气或排气的方法。准确地估算了反应气体或排气中的组分气体及其含量后,构建了比率矩阵以分离相关的重叠峰。通过在线工艺质谱仪纠正比率矩阵并获得相对灵敏度矩阵,检测到,过滤,归一化和线性回归的比率和校准标准气体。可以建立一个定量的数学模型,以实时获得反应气体或排气的每个组件的含量。该方法的最大定量误差和该方法的相对标准偏差在0.3%和1%以内,在在线量化代表性酵母发酵罐尾气之后。
体外诊断医疗装置*液相色谱串联质谱系统可以在生物基质中进行各种化合物的体外定量。本文提供的绩效数据仅是出于说明目的,可能不能代表实验室将获得的绩效。Thermo Fisher Scientific不建议使用其系统对本文描述的分析物进行分析。在单个实验室中的性能可能与由于因素,包括但不限于实验室方法,使用的材料,操作员技术和系统状况的因素可能不同。实验室有责任验证其打算在其设施中使用并遵守所有适用法律和政策的任何测定法。
Thermo Scientific™ Element GD Plus™ GD-MS 重新定义了先进高纯度固态材料的分析。对于高通量和超低 ppb 级检测限,Element GD Plus GD-MS 是常规和研究应用中进行批量样品分析和深度剖析的最方便和最强大的工具。
图2。使用Smaldiprep设备的矩阵应用程序的示意图 - 一种用于MS成像应用中基质沉积的自动化超细雾化器。SMALDIPREP设备可提供低于5μm的晶体尺寸;它使用预定义和可编辑的喷涂方法。对于在此技术说明的上下文中的应用中,将明胶嵌入,处理过的筋膜蠕虫[4]和健康的小鼠脑冷冻(厚度为20μm),并使用Smaldiprep设备用基质喷涂。矩阵特异性和依赖应用程序的方案,以优化利息应用中的点大小和组织类型的结果。在这里,将矩阵2,5-二羟基苯甲酸(2,5-DHB),1,5-二氨基磷灰石(DAN)和α-Cyano-4-羟基霉素酸(CHCA)应用于不同的组织类型和分析问题;有关详细信息,请参阅“结果”部分中的各个图形字幕。
通用实验室设备 – 仅供毒理学使用。© 2022 Thermo Fisher Scientific Inc. 保留所有权利。所有商标均为 Thermo Fisher Scientific 及其子公司的财产。此信息作为 Thermo Fisher Scientific Inc. 产品功能的示例提供。它不旨在鼓励以任何可能侵犯他人知识产权的方式使用这些产品。规格、条款和定价可能会发生变化。并非所有产品在所有国家/地区都有售。请咨询您当地的销售代表了解详情。TN001256-na-en 0922S
通用实验室设备 – 仅供毒理学使用。© 2022 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,否则所有商标均为 Thermo Fisher Scientific 及其子公司的财产。TOM Kits 是美国政府机构美国卫生与公众服务部 (U.S. Department of Health and Human Services) 的商标。此信息作为 Thermo Fisher Scientific Inc. 产品功能的示例提供。并非旨在鼓励以任何可能侵犯他人知识产权的方式使用这些产品。规格、条款和定价如有变更,恕不另行通知。并非所有产品在所有国家/地区均有供应。有关详细信息,请咨询您当地的销售代表。TN000794-na-en 0922S
摘要:航天器飞掠可以让我们了解行星物体气体包层的化学成分。在飞掠过程中,相对相遇速度通常为几公里/秒到几十公里/秒。当速度超过 5 公里/秒时,现代质谱仪在分析快速相遇的气体时会受到超高速撞击引起的碎裂过程的影响,导致在分析复杂分子时得到不明确的结果。在这种情况下,仪器使用前室,进入的物质在前室中与室壁发生多次碰撞。这些碰撞导致气体分子减速和热化。然而,这些碰撞也会解离分子键,从而使分子碎裂,并可能形成新的分子,使科学家无法推断出采样气体的实际化学成分。我们开发了一种新型飞行时间质谱仪,它可以处理高达 20 公里/秒的相对相遇速度,而无需前室及其相关的碎裂。它一次性分析 m/z 1 至 1000 的完整质量范围。这项创新可实现对复杂(有机)分子的明确分析。应用于土卫二、木卫二或木卫一,它将为探索太阳系提供可靠的化学成分数据集,以确定其状态、起源和演化。
毒理学实验室面临许多挑战,包括复杂基质中极大量的样品以及设计药物的泛滥。实验室必须快速且低成本地进行筛选和量化。虽然这些挑战可以单独解决,但用一种分析方法解决所有挑战要困难得多。在这里,我们提出了一种新颖的工作流程,它结合了液相色谱和高分辨率精确质量 (HRAM) 质谱法,可以在一次运行中筛选和量化大面板,同时保留回顾性查询分析数据以寻找新化合物或意外化合物的能力。此外,我们证明了在一种质谱仪型号上开发的方法可以在较新的仪器型号上成功运行。
仅供研究使用。不可用于诊断程序。© 2021 Thermo Fisher Scientific Inc. 保留所有权利。Intel 是 Intel Corporation 的注册商标。Microsoft 和 Windows 是 Microsoft Corporation 的注册商标。所有其他商标均为 Thermo Fisher Scientific 及其子公司的财产。此信息作为 Thermo Fisher Scientific Inc. 产品功能的示例提供。它不旨在鼓励以任何可能侵犯他人知识产权的方式使用这些产品。规格、条款和定价可能会发生变化。并非所有产品在所有国家/地区都有售。请咨询您当地的销售代表了解详情。PS65965-EN 0521M
当离子源在降低压力下充满气体的电池中的两个电极之间施加电势差时,就会发生光泽放电。在用于元素分析的配置中,样品充当阴极,其表面被撞击气体离子溅射。溅射颗粒(主要是中性原子)在血浆中下游电离。因为溅射和电离的过程是分离的,尤其是在脉冲模式操作中,因此观察到最小的非光谱基质效应。因此,可以建立相对灵敏度因子(RSF),实现定量分析或使用简单的离子束比(IBR)进行半定量分析来实现完美条件。