摘要。分形天线已经并将继续受到未来无线通信的关注。这是因为它们具有宽频和多频带功能、分形几何结构驱动多个谐振的机会,以及能够制造更小更轻、元件更少、辐射元件增益更高的天线。由石墨烯制成的小尺寸(即微米和纳米级)和超高频(太赫兹或 THz 范围)分形天线有可能以前所未有的数据速率(即每秒约 10 12 比特)增强无线通信。分形石墨烯天线是一种用于 THz 频谱无线电通信的高频可调天线,可实现无线纳米网络等独特应用。这是因为(单层)石墨烯是碳的一个原子厚的二维同素异形体,具有已知的最高电导率,目前任何其他材料(包括金和银等金属)都无法提供这种电导率。因此,将石墨烯的特性与微米和纳米级分形的自近似特性相结合,有可能彻底改变通信,至少在近场(几米的数量级)低功耗系统。在本文中,我们考虑了与这种颠覆性新技术的开发相关的基本物理和一些主要数学模型,以便为那些从事当前和未来研究的人提供指导,分形石墨烯天线就是用于高要求应用的先进材料的一个例子。这包括一些由石墨烯组成的分形贴片天线产生的 THz 场模式的示例模拟,根据“Drude”模型,其电导率与频率的倒数成比例。还探索了使用石墨烯生成 THz 源的方法,该方法基于红外激光泵浦以感应 THz 光电流。
更新:图像编辑器也将在文档包内可用。如果文档包中添加了图像或图像已存在,则选择图像时将出现“编辑图像”按钮。单击此按钮将显示图像编辑器。
弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 的研究人员开发出一种新型聚合物补片,它可以显著加速和简化以前费力、昂贵且耗时的受损轻型飞机部件修复过程。将这种可热成型、可回收的修补片压在受损区域,仅需 30 分钟即可完全固化。这种创新的纤维增强塑料用途广泛,可用于从航空到骨科等不同行业。修复轻型纤维复合材料部件(如用于飞机机翼、机身段、尾翼表面和舱门的部件)是一个费时、昂贵的过程,需要多个工作步骤。受损区域通常使用复杂的湿层压工艺或在表面应用纤维增强聚合物 (FRP) 或铝结构(称为双层)来修复。然而,这些方法需要较长的固化时间并需要额外的粘合剂。弗劳恩霍夫 IFAM 的研究人员现已开发出一种由动态聚合物网络(业内称为 vitrimers)制成的修补片,可将之前漫长而费力的修复过程缩短至 30 分钟。这种创新材料基于苯并恶嗪,这是一种新型热固性材料,也称为热固性材料,其真正特别之处在于,聚合塑料不会熔化,也不会像湿法层压中使用的传统树脂系统那样表现出其他行为。聚合物的动态网络过程使局部加热材料成为可能。完全固化的修补片在加热状态下可适应修复部位。在室温下,聚合物具有热固性,因此修补片不粘,储存时稳定。这节省了能源,因为修补片可以在室温下储存,不需要冷藏,从而降低了储存成本。修补片使用压力和热诱导交换反应应用于需要修复的轻质部件。它能够快速修复,30 分钟内完全固化。无需使用反应性危险材料,而传统树脂系统则必须如此。玻璃体特性使得可以在需要时移除补片,而不会留下任何残留物。“我们的无粘合剂、储存稳定的纤维增强补片可以直接修复受损的复合材料和混合结构。由于聚合物本质上是一种玻璃体,因此补片在储存过程中的表现类似于传统的热固性复合材料,但它也
该新产品旨在用于先天性心脏病(CHD)患者的手术治疗。全球冠心病的患病率是100人中的1人,在日本,据估计,每年大约有10,000名新生儿出生。新生儿和患有CHD的婴儿通常通过植入通常由合成或动物衍生的材料制成的医疗斑块来纠正由于间隔缺陷或血管狭窄(狭窄)而导致的血液动力学问题。然而,在手术后很长一段时间内,由于植入的斑块的恶化,大量患者最终需要重新介入,例如重复手术或导管治疗。这种恶化可能是由于免疫介导的外国体反应或由于斑块无法响应心脏和血管组织的生长而导致狭窄的发展。
1伦敦的伦敦项目,轨道,伦敦大学学院(UCL)的眼科研究所,英国伦敦WC1E 6BT; lyndon.dacruz1@nhs.net(l.d.c.); odgeorgiadis@gmail.com(O.G.); bnommiste@tenpoint-tx.com(B.N.); p.coffey@ucl.ac.uk(p.c.)2位于伦敦大学WC1E 6BT的Moorfields Eye Hospital NHS基金会NHS基金会NHS基金会信托基金会NHS基金会信托基金会NHS基金会信托基金会(UCL) mandeep.sagoo1@nhs.net 3 Moorfields眼医院NHS基金会信托基金会,伦敦市路162号,英国城市路162 t.soomro@nhs.net†这些作者都是第一位作者,他们为这项工作做出了同样的贡献。 •附录A中提供了伦敦项目研究小组的合作者/成员。2位于伦敦大学WC1E 6BT的Moorfields Eye Hospital NHS基金会NHS基金会NHS基金会信托基金会NHS基金会信托基金会NHS基金会信托基金会(UCL) mandeep.sagoo1@nhs.net 3 Moorfields眼医院NHS基金会信托基金会,伦敦市路162号,英国城市路162 t.soomro@nhs.net†这些作者都是第一位作者,他们为这项工作做出了同样的贡献。•附录A中提供了伦敦项目研究小组的合作者/成员。
近年来,仿制药的重新识别已取得了显着改善,但这些方法的设计是在人们可以使用的整个身体的假设下设计的。当由现实世界应用中的各种障碍物引起的遮挡时,这种假设会带来明显的表现降解。为了解决这个问题,已经出现了数据驱动的策略,以增强模型的遮挡性稳健性。在随机擦除范式之后,这些策略通常采用随机生成的噪声来取代随机选择的图像恢复以模拟障碍物。但是,随机策略对位置和内容不敏感,这意味着它们不能在应用程序方案中模仿现实世界的遮挡案例。为了克服此限制并充分利用数据集中的真实场景信息,本文提出了一种更直观,更有效的数据驱动策略,称为显着性贴片传输(SPT)。与视觉变压器结合使用,SPT使用显着贴片选择了人员实例和背景障碍。通过将人实例转移到不同的背景障碍物中,SPT可以轻松生成光真实的遮挡样品。此外,我们提出了一个与联合(OIOU)进行遮挡意识到的交叉点,以筛选面罩,以过滤更合适的组合和类临时策略,以实现更稳定的处理。对封闭和整体人士重新识别基准进行的广泛的实验评估表明,SPT在遮挡的REID上提供了基于VIT的REID算法的显着性能增长。
摘要:癌症是全球最常见的死亡原因之一。脑肿瘤是一种严重且危险的肿瘤,其检测技术存在一些困难;早期肿瘤较小时很难确定其位置。本研究的目的是设计一种适合检测脑癌肿瘤的低成本微带贴片天线传感器。使用计算机仿真技术 CST Studio Suite 3D EM 仿真和分析设计了具有不同频率 2.8 GHz、3.9 GHz、5GHz 和 5.6GHz 的贴片天线,用于诊断脑肿瘤。已使用六层脑模型(脂肪、硬脑膜、脑、皮肤、脑脊液 (CSF) 和头骨)对这些共振频率(低频带 (L-B) 2 GHz、中频带 (M- B) 3.9-5 GHz 和高频带 (U-B) > 5 GHz)进行了比较研究。在脑模型上有肿瘤细胞和没有肿瘤细胞的两种情况下评估了设计的贴片传感器。已观察到三个参数,即频率相移、深度反射回波损耗和功率吸收,用于指示肿瘤细胞的存在。这项研究的结论是,中频带 (M-B) 具有良好的穿透力和更好的回波损耗深度(约 - 20dB)。同时,较高频段提供 21 MHz 相移的高分辨率,但差异回波损耗的深度值仅为 -0.1dB。所提出的工作可以为生物医学应用的贴片传感器的设计提供途径。
摘要本文为能源工程主题,尤其是能源收集领域做出了重要贡献。无线功率传输(WPT)是最近在该领域使用的最广泛使用的方法之一,可以为Rectenna Systems等环境以干净的方式发电。Rectenna系统的主要组成部分是微带贴片天线(MPA)。这是本文提出一个新的概念1×4圆形极化MPA阵列的新颖概念,以在2.45 GHz的谐振频率(射频频率能量收集(RFEH)系统)的谐振频率下运行。基本MPA元件是使用中心插槽的正方形天线,在四个角处与缺陷的地面结构(DGS)方法相结合。为了提高天线的性能,以与Rectenna系统的整合电路集成,这是RFEH中最常用的系统。通过CST MWS软件和HFSS求解器获得的仿真结果表明,本文中的这种新颖设计在反射系数,电压站立波比,轴向比率,轴向比率,方向性和增益为2.45 [GHz]方面具有良好的性能。此开发的MPA适用于各种RFEH应用。
4.2剂量和给药方法为了获得最佳的保护效果,应在启动行程(或在旅途前的晚上)进行清洁,干燥,无毛的皮肤后的皮肤后,将单个scopopoderm透皮贴剂施加约5-6小时(请参阅第6.6节)。使用一个scopopoderm透皮贴片足以确保在72小时内进行保护;但是,如果仅需要较短的时间需要补丁,则应在旅程结束时将其删除。应需要更长的防护,必须在72小时后去除胚层透皮贴片,并在另一只耳朵后面涂上新的斑块。如果胚型透皮斑块意外脱离,则如果需要进行持续的治疗,应将其取代。为了防止活性物质的痕迹进入眼睛,患者应始终在与补丁接触后始终洗手并在去除贴剂后洗涤施用部位(请参阅第4.4节)。老年胚层应谨慎使用老年人(请参阅第4.4节)。儿童囊胚层可用于10岁或更高的儿童。尚未建立10岁以下儿童的安全性,也不建议使用其使用。肝和肾功能障碍术(请参阅第4.4节)。给药途径。有关打开和应用补丁的说明,请参见第6.6节。4.4使用一般骨pol碱具有抗胆碱能作用的特殊警告和预防措施(请参见第5.1节)。4.3禁忌症囊胚层是对骨po蛋白过敏或任何赋形剂的过敏患者禁忌的(请参阅第6.1节);以及青光眼患者。特质反应。副作用可以在删除补丁后持续24小时或更长时间(请参见第5.2节)。一次不应用一个补丁。
糖尿病是一个严重而广泛的健康问题,是早期死亡和严重持续性(慢性)疾病的主要原因。这是一种长期的代谢疾病,其特征是胰岛素不足引起的慢性胰岛素抵抗和高血糖。linagliptin是二肽基肽酶-4抑制剂(DPP-4抑制剂),通常被处方用于治疗II型糖尿病。但是,Linagliptin的渗透率较差,而水溶性却很少,这就是Linagliptin具有低生物利用度的原因,为29.5%。此外,需要保持稳定的血浆浓度,以有效地控制糖尿病患者血糖水平的长期控制。tdds通过完整的皮肤将药物输送到系统性循环中。这是皮下注射和口服药物输送系统的替代方法。本研究工作的主要目的是使用合适的聚合物和渗透增强剂制定Linagliptin透皮斑块,旨在通过渗透到皮肤表面来增加水溶性药物不良的生物利用度,并可以避免使用肝次要质量代谢。制作了透皮矩阵贴片并发现合适。利用盒子响应性Behnken的表面设计,提高了配方。根据实验的设计,对15种制剂进行了全面开发,并检查了折叠耐力和体外药物的释放。Linagliptin斑块的理想贴剂水平是通过使用折叠抗性和在体外药物释放的软件来确定的。与预期相一致,从15种制剂开始,在整个24小时的过程中,H5最有改进的斑块,该斑块释放了64.78%的药物。基于发现,这可以得出结论,由HPMC K100,Eudragit L100,PEG-400和Menthol制备的斑块可以有效地治疗糖尿病。
