如果没有委员会成员的指导、导师的帮助以及家人和妻子的支持,我不可能完成我的论文。我要向普拉萨德教授表示最深切的谢意,感谢他的出色指导、关心、耐心,以及为我提供良好的研究氛围。我还要感谢克林顿教授,他让我体验了实地研究淡水贻贝以及课本以外的实际问题,耐心地修改我的写作,并为我的研究提供资金支持。他们一直支持我,用他们的良好祝愿鼓励我。
如果没有委员会成员的指导、导师的帮助以及家人和妻子的支持,我不可能完成我的论文。我要向 Prasad 教授表示最深切的谢意,感谢他的出色指导、关心、耐心以及为我提供良好的研究氛围。我还要感谢 Clinton 教授,他让我体验了实地淡水贻贝的研究以及课本以外的实际问题,耐心地纠正我的写作并在经济上支持我的研究。两位教授一直支持我,并用他们的良好祝愿鼓励我。
摘要:溶菌酶是动物先天免疫系统的通用成分,它们通过水解其主细胞壁聚合物肽聚糖而杀死细菌。已经确定了三个主要的溶菌酶家族,称为鸡(c) - ,鹅(g)和无脊椎动物(i)-type。在反应中,细菌对三个溶菌酶家族中的每一个都进化了特定的蛋白抑制剂。在这项研究中,我们开发了由三个由C-,G-和I型型抑制剂功能化的三个Af-fiential矩阵的序列阵列,用于溶菌酶键入,即检测和区分溶菌酶从动物中流动或提取物。该工具在蓝贻贝(Mytilus Edulis)上进行了验证,其基因组具有多种推定的I-,G-和C型溶菌酶基因。血淋巴等离子体包含I-和G型,但不含C型溶菌酶。此外,分别分析了缺乏或过量产生I-type或G-type溶菌酶抑制剂的嗜水和大肠杆菌菌株的血淋巴存活,以研究两种溶菌酶在先天免疫中的作用。结果表明,G型溶菌酶在蓝贻贝的先天免疫中发挥了积极作用,但未能显示I-type溶菌酶的贡献。使用基于抑制剂的AFINIDE色谱法进行溶菌酶填充将是研究动物先天免疫的有用新工具。
印度农业研究委员会(ICAR)的宙斯盾的中央海洋渔业研究所(CMFRI)总部位于印度喀拉拉邦的高知。 它是世界上领先的热带海洋渔业研究机构之一,于1947年2月3日成立。 该研究所在2022年完成了为国家服务75年。 在过去的七十年中,ICAR-CMFRI通过研究,扩展和教育方面的重大贡献在印度的海洋渔业发展中发挥了关键作用。 ICAR-CMFRI 凭借最先进的研究基础设施和其他辅助设施,专注于海洋渔业资源管理,海洋培养,海洋生物技术和生物培训,海洋生物多样性,海洋环境和海洋环境和海洋环境和气候变化,气候变化,社会经济调查,社会经济调查以及政策。 在公海和沿海养殖中进行的研究工作为海洋鳍,虾,可食用的牡蛎,贻贝,蛤,蛤,海藻和海洋珍珠提供了技术上可行的孵化场和农场技术。 该研究所维护国家海洋印度农业研究委员会(ICAR)的宙斯盾的中央海洋渔业研究所(CMFRI)总部位于印度喀拉拉邦的高知。它是世界上领先的热带海洋渔业研究机构之一,于1947年2月3日成立。该研究所在2022年完成了为国家服务75年。在过去的七十年中,ICAR-CMFRI通过研究,扩展和教育方面的重大贡献在印度的海洋渔业发展中发挥了关键作用。ICAR-CMFRI 凭借最先进的研究基础设施和其他辅助设施,专注于海洋渔业资源管理,海洋培养,海洋生物技术和生物培训,海洋生物多样性,海洋环境和海洋环境和海洋环境和气候变化,气候变化,社会经济调查,社会经济调查以及政策。 在公海和沿海养殖中进行的研究工作为海洋鳍,虾,可食用的牡蛎,贻贝,蛤,蛤,海藻和海洋珍珠提供了技术上可行的孵化场和农场技术。 该研究所维护国家海洋凭借最先进的研究基础设施和其他辅助设施,专注于海洋渔业资源管理,海洋培养,海洋生物技术和生物培训,海洋生物多样性,海洋环境和海洋环境和海洋环境和气候变化,气候变化,社会经济调查,社会经济调查以及政策。在公海和沿海养殖中进行的研究工作为海洋鳍,虾,可食用的牡蛎,贻贝,蛤,蛤,海藻和海洋珍珠提供了技术上可行的孵化场和农场技术。该研究所维护国家海洋
酥脆的炸薯条埃尔片13,00€辣椒软壳在海藻上14,50€炸了牙垢酱15,50€炸了17,00欧元的安达卢西亚风格17,00欧元炸黑铃玫瑰鱼库弗26,50€26,50蒸鸡蛋17,00€剃须刀与半干番茄醋汁3,50€贻贝搭配Marinera酱14,50€泰国蔬菜与金枪鱼19,50€TUNA TARTAR 21,00€鲑鱼Tartar搭配Rum Apple 16,00€
大型藻类是一种可获得且相对容易养殖的海洋资源。它们有一些令人兴奋的应用前景,例如可用于治疗炎症、心脏病和凝血障碍的活性物质,但总体而言,海藻被业界视为琼脂、藻酸盐和角叉菜胶等商品的来源。无脊椎动物也令人感兴趣(例如齐考诺肽),但与微生物相比,它们在可持续收获或生物技术生产方面存在问题,尽管贻贝和牡蛎的养殖已经很成熟,海绵的养殖也正在成为可能。此外,我们也才刚刚开始认识到海洋微生物和更复杂的生物之间许多独特的共生或共生关系的全部含义。
在暴露和/或遥远的海洋地点进行水产养殖是一个新兴的行业和研究领域,旨在解决提高粮食安全的需求以及城市和沿海利益相关者向近岸和受保护的海洋水域扩张所带来的挑战。这一举措需要创新的解决方案,以使该行业在高能量环境中蓬勃发展。一些创新研究增加了对物理学、流体动力学和结构要求的理解,从而可以开发适当的系统。蓝贻贝 ( Mytilus edulis )、新西兰绿壳贻贝 ( Perna canaliculus ) 和太平洋牡蛎 ( Magallana gigas ) 是商业暴露双壳类水产养殖的主要目标。研究人员和业内成员正在积极推进现有结构,并为这些结构和适合此类条件的替代高价值物种开发新结构和方法。对于大型藻类(海藻)养殖,例如糖海带 ( Saccharina latissimi )、桨草 ( Laminaria digitata ) 或海带属。 (Ecklonia sp.)延绳系统被广泛使用,但需要进一步发展以承受完全暴露的环境并提高生产力和效率。在海洋鱼类养殖中,开放式海洋网箱设计主要有三种:柔性重力网箱、刚性巨型结构、封闭式网箱和潜水式网箱。随着水产养殖进入要求更高的环境,必须集中精力提高运营效率。本出版物考虑了与水产养殖扩展到暴露海域的要求有关的商业和研究进展,特别关注双壳类、大型藻类的养殖以及海洋鱼类养殖技术和结构发展。
传统的调查方法可以找到稀有和濒临灭绝的水生物种可能会很耗时,昂贵,对栖息地具有破坏性,并且受现场的身体状况的限制。通过生物体脱落到其环境中的环境DNA(EDNA)的采样可以克服这些局限性,从而最大化保护资源。但是,EDNA检测的最佳空间采样间隔是鲜为人知的。我们开发并评估了EDNA方法,以应用于Simpsonaias ambigua(Salamander Mussel),这是一种联合贻贝,在整个范围内被认为处于危险中。我们开发了一种定量的PCR分析和优化的方法来检测水样中的Ambigua Edna,并实验确定的EDNA脱落和衰减速率。我们使用这些速率填充了先前发布的EDNA传输模型,以估算距离源的最大下游距离(即,实时贻贝的位置)可以在其中检测到EDNA,这是环境相关的源EDNA浓度和水速度的函数。该模型预测,根据源EDNA浓度和水速度,最大检测距离的变化很大。在低EDNA浓度和水速度(分别为1.0拷贝/ml和0.1 m/s)下,仅在源中检测到EDNA,需要在空间密集的EDNA采样上检测到Edna。在较高的EDNA浓度和水速度(分别为5.0拷贝/ml和0.8 m/s)下,可以在下游至少检测到Edna,需要较少的密集采样。根据我们的结果,我们为开发最佳的EDNA采样设计提供了建议,以检测稀有物种或濒危物种。
Martin Baron - Live imaging of Notch signal responses to gain of function Notch mutants in Drosophila Matthew Birket - Investigating how the transcription factor HAND1 regulates human heart development Henry Birt - Use of molecular barcoding for identification of plant species Rok Krasovec - Mutagenesis and DNA repair in microbial communities Mato Lagator - Using molecular and synthetic研究细菌进化的生物学JianLu-脂质膜模型的制造RasmusPetersen-使用人工智能对动物行为进行研究HollyShiels- 2个可食用双壳类的太平洋牡蛎和蓝色的蓝色小贻贝的微塑料含量细胞色素P450酶的生物碱DongdaZhang-开发一种新型的数字双胞胎,用于可持续发酵过程预测建模