摘要。太赫兹波的控制为下一代传感、成像和信息通信提供了深厚的平台。然而,所有传统的太赫兹元件和系统都存在体积庞大、对缺陷敏感和传输损耗大等问题。我们提出并通过实验证明了拓扑器件的片上集成和小型化,这可能解决太赫兹技术的许多现有缺陷。我们设计和制造了基于谷-霍尔光子结构的拓扑器件,可用于片上太赫兹系统的各种集成组件。我们用拓扑波导、多端口耦合器、波分和回音壁模式谐振器证明了谷锁定非对称能量流和模式转换。我们的设备基于拓扑膜超表面,这对于开发片上光子学具有重要意义,并为太赫兹技术带来了许多特性。
摘要:本文讨论了天线、高功率回旋管和低噪声接收机等新型亚太赫兹仪器的最新发展,这些仪器提供了广泛的潜在应用。大气吸收现在已成为此类高性能亚太赫兹系统应用的主要限制因素,而天线的最佳位置选择对于天文、雷达和通信系统至关重要。本文介绍了研究欧亚大陆北部微波天文气候的最新成果。基于这些研究,本文提出了在苏法高原和高加索地区安装新天线的新观点和修正计划,并讨论了基于极高功率回旋管和低噪声超导接收机的新型仪器(如用于定位空间碎片的雷达和用于深空通信的通信枢纽)的可能应用。
摘要 提出使用具有空间纹理偏振的太赫兹 (THz) 矢量光束来控制量子点中两个相互作用电子的自旋和空间分布。我们从理论上研究了自旋和电荷电流密度的时空演化,并通过计算并发度量化了纠缠行为。结果表明,这两个方面都可以由驱动场的参数在皮秒 (ps) 时间尺度上有效控制。通过分析两种具有不同电子 g 因子的不同材料 GaAs 和 InGaAs,我们研究了 g 因子与产生有效能级间跃迁所需的自旋轨道耦合类型之间的关系。这些结果对于将量子点应用为量子信息技术中的基本纳米级硬件元素以及根据需要快速产生适当的自旋和电荷电流很有用。
自诞生以来,立方体卫星就成为了太空网络和探索领域最令人兴奋的技术,因为与同类传统卫星相比,立方体卫星的成本和复杂性更低 [1]。这使得太空任务的设计和运行周期成倍加快,也增加了人们对太空领域高风险企业的激励 [2]。这些突破为私有化太空网络时代铺平了道路,例如 SpaceX Starlink 星座 [3]。要充分释放太空网络的潜力,需要更高的数据速率和高度紧凑的设备 [4]。从这个角度来看,太赫兹 (THz) 频段(从 0.1 THz 到 10 THz)是一种巨大的频谱资源,可用于开发可用于下一代立方体卫星的无线技术 [5]。 THz 波段技术非常适合立方体卫星,因为它具有可维持极高数据速率的大型连续带宽,以及 THz 频率的亚毫米波长,这自然会产生高度紧凑的设备 [6]。然而,THz 频率下非常高的路径损耗仍然是电磁 (EM) 频谱这一部分未被充分利用的关键原因。一方面,THz 频率会因与特定频率下的某些气体分子(主要是水蒸气)的共振峰而遭受吸收损耗 [7]。尽管如此,如 [8] 中详细讨论的那样。太空中没有大气介质,因此吸收损耗减少,使 THz 波段成为卫星间通信链路的理想选择。同时,由于低地球轨道 (LEO) 内的大气存在减少,可以通过适当选择避免这些吸收峰的设计频率来减轻上行链路和下行链路期间的吸收损耗。另一方面,THz 频率的波长非常小,导致
摘要 —新太空时代的到来增加了太空通信流量,公共太空机构和私人公司牵头开展了新的太空任务。在不久的将来,火星殖民也是载人任务的目标。由于地球和火星附近的太空流量增加,带宽变得拥挤不堪。此外,当前任务的下行链路性能在延迟和数据速率方面并不令人满意。因此,为了满足日益增长的空间链路需求,本研究提出了太赫兹波段(0.1-10 THz)无线通信。与此相符,我们讨论了实现 THz 波段空间链路所带来的主要挑战以及可能的解决方案。此外,我们模拟了火星大气晴朗和沙尘暴严重的火星-空间 THz 链路,以表明即使在最恶劣的条件下,火星通信流量也可以获得较大的带宽。
摘要:采用固相合成、研磨、压制和烧结工艺制备了含有堇青石、莫来石、SiO 2 玻璃和 SiO 2 -B 2 O 3 -Al 2 O 3 - BaO-ZrO 2 玻璃的玻璃陶瓷复合材料。使用加热显微镜、差示热分析、热重法、扫描电子显微镜、能量色散光谱、X 射线衍射分析、阻抗谱、透射法和时域光谱 (TDS) 检查了 Hz-MHz、GHz 和 THz 范围内的热行为、微观结构、成分和介电性能。获得的基板表现出 4.0-4.8 的低介电常数。自发形成的封闭孔隙取决于烧结条件,被认为是降低有效介电常数的一个因素。
将电子自旋融入电子设备是自旋电子学的核心思想。[1] 这一不断发展的研究领域的最终目标是产生、控制和检测太赫兹 (THz) 速率的自旋电流。[2] 为了实现这种高速自旋操作,自旋轨道相互作用 (SOI) 虽然很弱,但却起着关键作用,因为它将电子的运动与其自旋态耦合在一起。[3] 从经典观点来看,SOI 可以理解为自旋相关的有效磁场,它使同向传播的自旋向上和自旋向下的传导电子偏向相反的方向(见图 1a)。SOI 的重要结果是自旋霍尔效应 (SHE) [4] 及其磁性对应物反常霍尔效应 (AHE)。[5,6] 在具有 SOI 的金属中,SHE 将电荷电流转换为横向纯自旋
摘要 强太赫兹 (THz) 电场和磁瞬变开辟了科学和应用的新视野。我们回顾了实现具有极端场强的亚周期 THz 脉冲最有希望的方法。在双色中红外和远红外超短激光脉冲的非线性传播过程中,会产生长而粗的等离子体串,其中强光电流会导致强烈的 THz 瞬变。相应的 THz 电场和磁场强度分别可能达到千兆伏每厘米和千特斯拉的水平。这些 THz 场的强度使极端非线性光学和相对论物理学成为可能。我们从光物质与中红外和远红外超短激光脉冲相互作用的微观物理过程、这些激光场非线性传播的理论和数值进展以及迄今为止最重要的实验演示开始,进行了全面的回顾。
携带轨道角动量 (OAM) 的表面等离子体极化子,即等离子体涡旋,在光学捕获、量子信息处理和通信领域引起了广泛关注。先前对近场 OAM 的研究仅限于产生单个等离子体涡旋,这不可避免地降低了进一步的片上应用。几何超表面是超材料的二维对应物,具有前所未有的操控电磁波相位、偏振和振幅的能力,为控制等离子体涡旋提供了灵活的平台。在这里,我们提出并通过实验演示了一种基于几何超表面实现太赫兹 (THz) 等离子体涡旋复用的方法。在圆偏振 THz 波的照射下,在金属/空气界面处产生多个具有相同拓扑电荷的等离子体涡旋。此外,还展示了从自旋角动量到多个等离子体 OAM 的转换,即具有不同拓扑电荷的多个等离子体涡旋。由具有不同平面方向的成对空气缝组成的几何超表面旨在展示这些特性。我们提出的方法可能为信息容量不断增加的片上应用开辟一条道路。