计算机及其辅助技术的发展不应被抹杀、削弱或削弱。毫无疑问:战争是可恶的。但持续的国家建设和军事行动可以带来惊人的技术进步。战争是技术创新的强大驱动力 (1)。“通用技术”的发展尤其如此,即那些提供全新材料或信息处理方式的技术 (2)。这些技术必然会创造和摧毁新的产业、运动方式、能源创造和信息处理(钢铁而非铁、书籍、发电机、汽车、数字计算机)。在此过程中,这些基础技术将带来新的通信形式、文化活动和众多辅助产业。我们再重复一遍:人工智能是第二次世界大战的产物,数字计算机、微波炉、晶体管收音机和便携式音乐设备、台式电脑和笔记本电脑、手机、iPod、iPad、计算机图形以及成千上万的软件应用程序也是如此。冷战的创造力和对计算机革命的塑造的间接影响理论在当前关于这一主题的学术讨论中盛行:其矛盾的创造力不容否认 (3)。
作者:K Carscadden · 2022 · 被引用 6 次 — ... 军事小道,多伦多,安大略省,M1C 1A4 加拿大。摘要 了解新特征的起源和影响一直是许多领域的长期关注点...
在大多数金属中的超导性是由于纵向自旋波的活性将电子结合到对成对中,以使Meissner效应以及静态磁场中的角动量响应产生。这些旋转波的大部分似乎是由晶格上的核自旋提供的。对于低质量实体(小于10-40 kg),在室温下,纵向旋转波不足以在室温下检测到它们,> 1000 O K。这些大规模的量子结构在1米处无处不在,在金属中也将存在于环境静态磁场弱且温度较低的空间中。这些巨大的玻色子收集可能是空间中重力检测到的暗物质的来源,这些实验提供了一个测试床以了解其特性。a
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在我们宇宙的数十亿个星系中,有数万亿个恒星系统,每个星系都有自己的行星、卫星、小行星和彗星。我们的星球存在于外太空的一个口袋中,我们很容易忘记我们的星球只是浩瀚宇宙中的一个太阳系。我们才刚刚开始揭开和解答宇宙和我们存在的奥秘,还有很多我们还没有找到答案。哈勃望远镜是现代历史上最著名的望远镜之一,因为它在帮助我们开始想象和理解我们称之为家园的宇宙方面发挥了关键作用。然而,尽管它对天文学的发展做出了重要贡献,但它过时的技术已经开始阻碍我们回答关于宇宙越来越复杂的问题。为了解决这个问题,美国宇航局最近发射了詹姆斯·韦伯太空望远镜 (JWST),以美国宇航局第二任局长的名字命名,他被认为是
镁合金具有生物相容性和可生物降解性,并能促进骨长入,使其成为未来治疗大面积骨缺损时替代自体和同种异体移植的理想候选材料。这些合金的粉末床熔合 - 激光束 (PBF-LB) 增材制造将进一步允许生产针对骨移植进行优化的复杂结构。然而,通过 PBF-LB 加工的结构的腐蚀率仍然太高。更好地了解 PBF-LB 期间产生的微观结构对腐蚀性能的影响被认为是其未来在植入物中应用的关键。在本研究中,研究了 PBF-LB 加工和随后的热等静压 (HIP) 对不同样品方向的微观结构和织构的影响,并将其与 Mg-Y-Nd-Zr 合金的腐蚀行为联系起来。将结果与挤压的 Mg-Y-Nd-Zr 合金进行了比较。与挤压材料相比,PBF-LB 加工材料的二次相数量越多,其局部腐蚀速率就越高。由于二次相的生长,HIP 之后的腐蚀速率进一步增加。此外,在 PBF-LB 材料中观察到了强烈的纹理,而在 HIP 材料中这种纹理也得到了增强。虽然这会影响通过动电位极化测试测得的电化学活性,但在长期质量变化和氢释放测试中,任何纹理效应似乎都被二次相的贡献所掩盖。未来的工作应该进一步研究各个工艺参数对材料微观结构和由此产生的腐蚀行为的影响,以进一步阐明其相互依赖性。
量子力学的纠缠和概率行为是根据量子场理论(QFT)的进步来查看的。尤其是爱因斯坦的Bohm版本(B-EPR),Podolsky,Rosen(EPR)实验,现在借助QFT的现代电子数据来查看。在QFT中,自由电子具有裸露的核心,周围是“敷料”。该敷料由一个或多个在绑定电子的分娩期间从真空中拉出的一个或多个虚拟颗粒/场。在QFT中,通过消除Bremsstrahlung的能量损失来帮助一个绑定的电子自由。本文借助“随机矢量范式”(RVP),使用QFT的自由电子结构开发了“缝隙”数值模型。RVP简单地将QFT的自由电子表示为裸露的核心,并由EM敷料表达。使用此RVP,我们将新近释放的电子带有1/2的矢量样EM旋转特性。由此,蒙特卡洛计算机分析提供了贝尔所述的B-EPR经验的详细比较。纠缠财产可以提供一种运输共享编码信息的方法。总体而言,电子敷料可以传达可能为QM提供其纠缠和概率行为的随机元素。关键字
摘要。起源太空望远镜(起源)对先前红外任务的科学能力的显着改善是基于其冷望远镜(4.5 K)与低噪声FAR-FAR-FAR-FAR-FAR-FAR-FER-FER-FER-FECTORS和超级IR探测器相结合的。少数新技术将使起源能够接近自然天然背景施加的基本灵敏度限制并提供开创性的科学。本文介绍了一个强大的计划,以使起源任务成熟,从而使Cryocooler技术从当前的最新技术(SOA)到技术准备水平(TRL)5到2025年,并通过Mission Preliminal Desirdiniary Design Review到TRL 6。与今天的SOA相对应的输入TRL为4或5,具体取决于所讨论的技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制这项工作需要完全归因于包括其doi在内的原始出版物。[doi:10.1117/1.jatis.7.1.011008]
摘要:稀土掺杂纳米粒子 (RENPs) 因其光学、磁性和化学特性而引起材料科学界越来越多的关注。RENP 可以在第二生物窗口 (NIR-II,1000 − 1400 nm) 发射和吸收辐射,使其成为光致发光 (PL) 体内成像的理想光学探针。它们的窄发射带和长 PL 寿命可实现无自发荧光的多路复用成像。此外,其中一些 RENP 的 PL 特性具有很强的温度依赖性,这使远程热成像成为可能。钕和镱共掺杂的 NPs 就是一个例子,它们已被用作热报告基因,用于体内诊断,例如炎症过程。然而,由于缺乏关于这些 NP 的化学成分和结构如何影响其热敏感性的知识,阻碍了进一步优化。为了阐明这一点,我们系统地研究了它们的发射强度、PL 衰减时间曲线、绝对 PL 量子产率和热灵敏度与核心化学成分和尺寸、活性壳和外部惰性壳厚度的关系。结果揭示了每个因素在优化 NP 热灵敏度方面的关键贡献。最佳活性壳厚度约为 2 nm,外部惰性壳为 3.5 nm,可最大化 NPs 的 PL 寿命和热响应,这是由于温度相关的反向能量转移、表面猝灭效应和活性离子在薄层中的限制之间的竞争。这些发现为合理设计具有最佳热灵敏度的 RENPs 铺平了道路。关键词:稀土纳米粒子、核心@壳@壳、温度测定、光致发光发射、NIR、量子产率、PL 寿命。
1900 年 12 月 14 日,马克斯·普朗克向德国物理学会提交了他对黑体辐射分布定律的推导,能量量子的概念首次出现在物理学中。考虑到量子理论产生的巨大影响,令人惊讶的是,很少有人关注普朗克迈出引入量子的第一步的推理的详细研究。当然,文献中有许多关于量子理论起源的描述,但几乎所有这些描述在历史上都是不准确的、缺乏批判性的,而且对于普朗克自己的工作及其背景都具有很大的误导性。我们确实有普朗克的回顾性记述[1],这些记述清晰而一致地描绘了他自己对这一发展的看法,还有罗森菲尔德[21]的一篇关于量子理论早期的优秀专著,该书对普朗克的工作进行了恰当的历史背景介绍,但鲜为人知。在我看来,如果我们要充分理解普朗克决定性一步的性质,以及它在多大程度上标志着与先前思想的真正决裂,仍然有两个关键问题必须回答,这两个问题并非毫无关联。第一个问题实际上是一个历史问题:普朗克是否知道瑞利推导出的辐射分布定律是经典物理学的必然结果?大多数作者对这个问题的回答是肯定的,并将普朗克引入量子描述为他对经典理论与实验结果不一致以及经典理论在“紫外灾变”中表现出的内部失败所带来的“危机”挑战的回应。事实上,根本没有这样的危机,或者说根本没有意识到这样的危机。1900 年夏天之前,所有关于黑体辐射的研究都是在不了解古典物理学对这个问题意味着什么的情况下进行的。直到 1900 年 6 月,瑞利勋爵才发表了一份两页的说明,其中首次推导出古典分布定律,瑞利论文的非常严重的意义在相当长一段时间内才被普遍认识到。普朗克在 1900 年和 1901 年的论文中没有提到瑞利的说明,在多年后发表的关于量子理论起源的论述中也没有提到瑞利。然而,普朗克似乎知道瑞利的工作,但他并不认为它比他对大约在同一时间发表的其他几篇论文更有意义,在这些论文中,或多或少地尝试了临时方法。