不论地形如何。典型的例子是飞机因发动机故障而被迫降落。通常,迫降也是紧急降落,因为事件的根本原因往往是宣布紧急情况的充分理由(例如机上起火、单引擎飞机发动机故障、大面积结构损坏等)。但是,有些情况下迫降不是紧急情况,例如当飞机在军事拦截后被迫使用特定机场时。此外,还有很多情况是宣布紧急情况,但机组人员决定继续飞往更合适的机场。一个例子是 1989 年的 DC10 事件,飞机在发动机故障导致所有液压系统失灵后继续飞行了大约 45 分钟。如果在机场进行迫降,迫降通常会与“全面紧急”程序同时进行,这意味着 RFFS 设备和人员将处于指定位置(跑道附近)。
冒烟、起火或设备级故障等事件在日常新闻中屡见不鲜。虽然本文强调,对于制作精良的电池来说,此类危害微乎其微,但重要的是,随着新电池化学成分、几何形状和制造工艺的引入,这些新电池必须至少与当今行业最佳电池一样安全。人们开发了各种方法来减轻这些不可预测事件的风险,即概率和后果。例如,在具有刚性钢壳的圆柱形电池中,外壳的通风设计被集成在一起,以防止内部压力不受限制地积聚,从而降低电池故障的风险。随着技术的强大和日益普及,未来的可充电电池预计将更加智能和安全,以便更好地利用可持续能源。因此,Huang 等人的观点是有根据的,因为传感是电池寿命和可持续性的关键。[1]
执行摘要 有几种火灾风险评估、火灾追踪和火灾响应资源可供使用。风险指标和火灾响应程序有时会进行修改,以包括电力系统环境。风险指标通常评估火灾导致电力系统故障或停电的风险,尤其是对输电系统而言。响应程序经过修改,以确保电力系统设备和急救人员的安全,并协调电力系统停电,以确保火灾期间的安全并防止高风险期间起火。尽管野火响应的某些方面已进行调整以包括电力系统问题,但对电力系统运营和维护的调整以包括野火风险和响应仍处于起步阶段。特别是,评估电力系统组件引发野火可能性的风险指标可能是指导电力系统升级工作和电力系统消防安全措施的重要帮助。
电压监测 - BMS系统最直接的方面之一是监视锂离子电池电压,必须将其保持在上限内(通常约为4.2伏左右)和下限(通常为2.0伏)以防止对电池的永久损害。在充电过程中,如果电压增加了推荐的上部电池电压,通常为4.2伏,则过量的电流可能会流过电池电池。多余的电流促进金属锂在石墨阳极表面的沉积。这减少了可用于反应的游离锂离子的数量,因此可能导致细胞容量的不可逆转。锂的镀层也会形成尖峰,针状晶体,称为树突,可以生长到足够大以至于到达阴极并缩短细胞,并可能引起火。过多的电流还会导致细胞的加热增加,并伴随着包装温度的升高
执行摘要 2009 年 2 月 12 日,美国东部标准时间 (EST) 约 22:17 科尔根 3407 航班,一架庞巴迪 DHC-8-Q400 飞机在夜间仪表气象条件 (IMC) 下仪表进近时坠毁于布法罗-尼亚加拉国际机场 (BUF) 23 号跑道。该航班是联邦法规 (CFR) 第 121 部分定期客运航班,由科尔根航空公司运营,作为大陆航空从纽瓦克自由国际机场 (EWR) 飞往布法罗。事故地点位于纽约州克拉伦斯中心,距机场东北约 5 海里 (nm)。2 名机组人员、2 名客舱工作人员和 45 名乘客受重伤,飞机因撞击力和坠机后起火而严重受损。地面上还有一人死亡。
a. 耐撞性,适用于飞机客舱内部,表示在基本设计中纳入了与保护“可幸存的碰撞环境”中的飞机乘员相关的考虑因素。当客舱乘员受到人类可承受范围内的碰撞力,并且乘客空间的结构完整性保持完好,使得乘员可以快速撤离飞机时,即为“可幸存”的碰撞环境。飞机安全的结构设计在不同程度上体现了适航性和耐撞性设计目标。适航性设计目标涉及机身承受设计载荷的能力,或保持飞机相对于运行环境的飞行安全。耐撞性设计目标涉及乘员相对于飞机的安全。耐撞性的某些方面,例如油箱/系统设计、机身变形和防止坠机后起火,不在本 AC 的讨论范围内。
安全风险描述:如果发生高压电池单元内部短路,客户可能会遇到车辆推进系统关闭的情况。失去动力会增加撞车和受伤的风险。转向、制动和照明功能不受影响。如果发生高压电池单元内部短路,客户还可能会遇到电池热量排放,从而可能导致车辆起火,增加受伤的风险。原因描述:电池单元供应商生产工艺的变化可能会导致电池阴极在电池隔膜层中产生微缺陷和/或局部应力。这些微缺陷和局部应力可能会损坏隔膜。识别可能发生的任何警告:如果发生高压电池单元内部短路,客户将收到通过组合仪表显示的“立即安全停车”消息。
根据文献和我们的经验,由于多个绝缘缺陷而产生的电弧是锂离子电池起火的重要原因 [1, 2]。其结果是电池的部分或全部短路,而传统的全系统保护装置(电池管理系统 (BMS) 和保险丝)却不起作用。在这种情况下,与 [3] 有关热失控是否从单个电池蔓延到其他电池的研究不同 [4],多个电池可能同时进入热失控状态。风险是短路回路中的所有蓄电池同时热失控,火势非常迅速,可燃气体大量产生,能量释放。我们的研究工作的一部分是表征蓄电池内部保护装置的最大断路功率 [5]。这项工作表明,内置电池保护装置无法在这种情况下断路电流。因此,必须在所有情况下实施有效的绝缘策略。在本文中,我们研究了创建正确隔离的电池系统需要考虑的各种概念。
无论地形如何,迫降都是不可避免的。典型的例子是飞机因发动机故障被迫降落。通常,迫降也是紧急降落,因为事件的根本原因通常是宣布紧急情况的充分理由(例如机上起火、单引擎飞机发动机故障、大面积结构损坏等)。但是,有些情况下,迫降不是紧急情况,例如,飞机在军事拦截后被迫使用特定机场。此外,在许多情况下,宣布紧急情况,但机组人员决定继续飞往更合适的机场。一个例子是 1989 年的 DC10 事件,飞机在发动机故障导致所有液压系统失灵后继续飞行了大约 45 分钟。如果在机场进行迫降,迫降通常会与“全面紧急”程序同时进行,这意味着 RFFS 设备和人员将在其指定位置(靠近跑道)。
无论地形如何,迫降都是不可避免的。典型的例子是飞机因发动机故障被迫降落。通常,迫降也是紧急降落,因为事件的根本原因通常是宣布紧急情况的充分理由(例如机上起火、单引擎飞机发动机故障、大面积结构损坏等)。但是,有些情况下,迫降不是紧急情况,例如,飞机在军事拦截后被迫使用特定机场。此外,在许多情况下,宣布紧急情况,但机组人员决定继续飞往更合适的机场。一个例子是 1989 年的 DC10 事件,飞机在发动机故障导致所有液压系统失灵后继续飞行了大约 45 分钟。如果在机场进行迫降,迫降通常会与“全面紧急”程序同时进行,这意味着 RFFS 设备和人员将在其指定位置(靠近跑道)。