本研究的目的是从人为因素的角度考察飞机维修领域由于工作量和时间压力而发生的飞机事故。本研究采用了定性研究设计之一的案例研究方法。经观察,此次飞机事故的发生是因为维修技师在更换飞机主起落架时,没有将右起落架减震器管安装到主液压系统中,而主管人员也没有管控好这次维修操作。因此,在此次维护后首飞时,飞机在跑道上着陆时,感觉到右起落架剧烈震动,飞机向右偏离,随后右主起落架严重受损。当我们回顾事故发生的主要原因时,我们发现过大的工作量和时间压力影响了维护技术人员和主管的表现,并导致他们因人为因素而犯下错误。可以说这项研究很重要,因为它涉及真实事件,揭示了该事件中的人为因素错误如何危及飞行安全,并为飞机维修领域的文献做出了贡献。
AFLoNext 是一个为期四年的项目,由欧盟委员会在第七框架计划下资助。该项目的主要目标是验证和完善用于新型飞机配置的极具前景的流动控制和降噪技术,以在提高飞机性能和减少环境足迹方面迈出一大步。该项目联盟由来自 15 个国家的 40 个欧洲合作伙伴组成。构成 AFLoNext 科学概念的六条技术流之一涉及减轻和控制起飞和降落期间起落架区域的振动。起落架附近的结构部件,例如起落架壳壁、支柱或起落架门,通常会承受显著的动态载荷。这些载荷源于波动的气动压力和由此产生的结构振动。机身下方高度波动且复杂的气动流动行为会导致结构部件上的非稳定压力。本文介绍了用于预测此类动态载荷的 CFD 方法,并介绍了使用混合 RANS-LES 模型和格子波尔兹曼方法计算的一些初步结果。与飞行测试数据的比较验证了这些 CFD 模拟的真实性。
本文研究并比较了飞机的被动和主动起落架系统以及飞机滑行时由于跑道不平整引起的动态响应。跑道不平整引起的动态载荷和振动会导致机身疲劳、乘客不适并降低飞行员控制飞机的能力。本文的目标之一是获得全飞机模型的被动和主动起落架的数学模型。本文的主要目的是为主动起落架系统设计线性二次调节器 (LQR),该系统选择悬架系统的阻尼和刚度性能作为控制对象。有时,由于主动控制系统中的非线性执行器导致过程动态变化、环境条件变化和扰动特征变化,传统的反馈控制器可能无法很好地发挥作用。为了克服上述问题,我们设计了一个基于线性二次调节器的二阶系统控制器。通过数值模拟将主动系统的性能与被动起落架系统进行了比较。本论文的结果与参考文献中提到的先前工作相比,表明机身加速度提高了 37.04%,机身位移提高了 20%,减震支柱行程提高了 13.8%。主动起落架系统能够通过减少
摘要 舰载机滑跃起飞飞行条件特殊、飞行速度低,对飞行安全构成威胁。处理该多学科交叉问题,需要综合考虑航母运动、飞机动力学、起落架和海况风场等因素。针对舰载机滑跃起飞的具体海军作战环境,建立了涉及舰载机、飞机、起落架运动实体,涉及起飞指令、控制系统和甲板风扰动的多体系统一体化动力学仿真模型。基于Matlab/Simulink环境,实现了多体系统仿真。通过舰载机滑跃起飞算例仿真,验证了模型的有效性和结果的合理性。该仿真模型与软件适用于舰载机起飞性能、飞行品质与安全、起落架载荷影响、航母甲板参数等多学科交叉问题的研究。ª 2013 CSAA & BUAA。由 Elsevier Ltd. 制作和托管。保留所有权利。
第 25.471 条 总则 ................................................................................................ 170 第 25.473 条 着陆载荷条件和假设 .............................................................................. 170 第 25.477 条 起落架布置 .............................................................................................. 171 第 25.479 条 平着陆条件 .............................................................................................. 171 第 25.481 条 尾朝下着陆条件 ...................................................................................... 172 第 25.483 条 单起落架着陆条件 ...................................................................................... 172 第 25.485 条 侧向载荷条件 ............................................................................................. 172 第 25.487 条 反弹着陆条件 ............................................................................................. 173 第 25.489 条 地面处理条件 ............................................................................................. 173 第 25.491 条 滑行、起飞和着陆滑跑 ................................................................................ 173
图 1. MD 530F Cayuse Warrior - 特点 ...................................................................................................................................... 1 图 2. MD 530F Cayuse Warrior 系统架构 ............................................................................................................................. 5 图 3. MD 530F Cayuse Warrior 主要尺寸(侧面和顶部) ............................................................................................. 6 图 4. MD 530F Cayuse Warrior 主要尺寸(正面) ............................................................................................................. 7 图 5. MD 530F Cayuse Warrior 的特点 ............................................................................................................................. 7 图 6 双启动系统 ............................................................................................................................................................................. 8 图 7. MD 530F Cayuse Warrior 起落架 ............................................................................................................................................. 8 图 8. MD 530F Cayuse Warrior 起落架离地间隙。 ........................................................................... 9 图 9. 飞行控制 ................................................................................................................
对于双引擎飞机,耗电量最大的是起落架的操作。起落架的升起或降下会消耗两台交流发电机(或发电机)总负载容量的 30% 到 40%。其次是防冰系统的累积耗电量。开启皮托管加热器、失速静脉加热器、螺旋桨加热器、挡风玻璃加热器和燃油防冰装置,再加上启动除冰装置,会消耗 25% 到 35% 的可用电量。灯光(包括外部和内部)最多消耗 25%,仅着陆灯就消耗 15%。航空电子设备(导航、通信和显示)
液压;刹车、襟翼、扰流板、方向舵、副翼、起落架泵 重量传感器 - 起落架 涡轮机;转速 (N1/N2)、进气口 - 涡轮压力、温度、燃油燃烧 电压表;驾驶舱、主总线、客舱、辅助电源、货物、发动机、APU 发电机仪表(发动机、APU) 电力负荷(安培/小时);驾驶舱、客舱、货物 火灾传感器;客舱、货物、发动机、燃油、刹车、电子设备舱 二氧化碳;客舱、货物 磁罗盘 GPS(卫星 / 地面) 无线电罗盘 (NDB) 多普勒雷达;天气、闪电、下沉气流(微下击暴流)
在与飞行学校所有者和 CFI 的会面中,设计师确认坚固的起落架对于飞机作为教练机的成功至关重要。因此,Skycatcher 部署了一个简单但坚固的主起落架,由高强度锥形钢管锻造而成。它吸收了硬着陆的冲击,同时最大限度地减少了维护要求。内饰也采用了重大创新。滑入 Skycatcher,您会注意到机舱与之前的 Cessna 型号或其他轻型运动飞机明显不同;它明显更宽,并采用了量身定制的创新技术,以提供更舒适、更直观的飞行体验。
起落架故障是航空业高度关注的问题。根据联邦航空管理局的报告,大多数飞机故障发生在飞机起飞和降落时。一般来说,飞机故障与起落架维护不当和健康监测检查有关。在本项目工作中,选择了三轮起落架减震器系统模型,并使用 AMESim 软件包在多物理域中对其进行了分析。AMESim 代表用于执行工程系统仿真的高级建模环境。该软件包提供了一个 1D 仿真套件,用于对多领域智能系统进行建模和分析,并预测其多学科性能。建模中考虑的各种多物理域包括机械、气动和液压。对这些域的每个子组件进行建模并检查其输出变量。在动态模拟下,绘制了减震器的垂直载荷、支柱位移和效率曲线,以适应各种下沉速度。使用 MATLAB 编程包执行数学函数,借助载荷和位移曲线图来查找减震器的效率。在多物理动态模拟中,绘制了相对于时间的垂直载荷和相对于时间的支柱位移。为了验证目的,这些图与实验图相吻合,并且这些图匹配良好。