• Determines granular process inefficiencies • Finds, monitors, and sets up tasks for automation with bots or scripts • Extrapolates information from occurrences on a workstation or recorded from screens, creates process documentation, and automates simulation model generation • Restores or expands a model and provides process recommendations based on previous data
卫星现在通常用于测量水和陆地表面的反射,因此与环境相关的参数,例如水生叶绿素浓度和陆地植被指数。对于每个卫星任务,对于所有光谱带的大气底部都需要放射线验证,并涵盖将使用卫星数据的所有典型条件。现有的网络,例如水和陆地的Radcalnet等现有网络提供了至关重要的验证信息,但是(Aeronet-OC)不涵盖所有光谱带或(Radcalnet)不涵盖所有表面类型和查看角度。在这篇文章中,我们讨论了光辐射测定法中仪器,测量方法和不确定性估计的最新进展,并提出了以下观点,即需要一个新的自动化高光谱辐射仪网络来进行多损新的水和陆地表面反射率的多效率辐射验证。描述了联合网络概念的超网络,为网络特定方面的研究论文提供了背景。该网络在其对土地和水面的共同方法方面都是独一无二的。解释了土地和水测量之间的共同方面和差异。基于对面向验证的研讨会的HyperNET数据的早期热情,我们认为,这种新的自动高光谱辐射仪网络将有助于对水和多角度的多端辐射验证和多角度土地表面反射的反射。HyperNet网络与其他测量网络具有很强的协同作用(Aeronet,
1马萨诸塞州剑桥市剑桥市理论上物理学中心,美国2139,美国2伊利诺伊州乌尔巴纳 - 卢巴纳大学 - 伊利诺伊州乌尔巴纳大学61801的物理学系美国伊利诺伊州巴达维亚市费米国家加速器实验室,美国60510,美国5超导量子材料和系统中心(SQMS),费米国家加速器实验室,巴达维亚,伊利诺伊州60510,美国6号物理和天文学系,美国伊利诺伊州伊利诺伊州60208,伊利诺伊州60208,加利福尼亚州,伊利诺伊州60208,伊利诺伊州60208,加利福尼亚州, Ithems,Wako,Saitama 351-0198,日本9南方科学技术大学,深圳,广东518052,中国
风振对双子座 8m 主镜的影响 Myung K. Cho 1,2 、Larry Stepp 1 和 Seongho Kim 3 (1)双子座 8m 望远镜项目;(2)亚利桑那大学光学科学中心;(3)亚利桑那大学航空航天和机械工程学院 摘要 大型望远镜的关键设计因素之一是控制由风压变化引起的主镜畸变。为了量化望远镜风荷载效应,双子座天文台在实际山顶条件下进行了一系列风试验。在南双子座望远镜的调试期间,同时测量了镜面多个点的压力,以及穹顶内外多个位置的风速和风向。在测试期间,我们改变了穹顶相对于风的位置、望远镜仰角、挡风玻璃在观测狭缝中的位置以及通风门的开口大小。针对 116 种不同的测试条件,以每秒十次的数据采样率记录了五分钟的数据。这些数据集经过处理,可提供每个时刻镜面上的压力图。根据这些压力图,使用有限元分析计算主镜的光学表面畸变。开发了数据缩减程序,以增强测试数据和镜面畸变的可视化。测试结果对
微创心脏手术技术的进步为传统全胸骨切开手术提供了可行的替代方案。这些方法的开发是为了减少组织创伤,缩短恢复时间,并满足对微创治疗方案日益增长的需求。本综述探讨了内镜微创心脏手术的最新进展,该手术使用精密仪器和先进的成像技术来执行复杂的心脏手术,例如瓣膜手术、冠状动脉搭桥术和先天性缺陷的矫正。通过回顾我们在这些技术方面的经验,我们为希望采用微创心脏手术的外科医生提供了实用信息。微创心脏手术的规划和执行中突出的创新反映了心脏手术向更安全、更高效的方向发展的趋势。
脑肿瘤的识别很耗时,因此开发一个使用成像技术的自动化系统非常重要。使用磁共振图像 (MRI) 将脑肿瘤分类为良性或恶性。从基于 MRI 的脑肿瘤图像中,提取特征对于模式识别至关重要,模式识别可根据颜色、名称、形状等确定对象。因此,分类器依赖于形状、颜色等特征的强度,然而,分类器依赖于使用深度学习分类器提取的特征,而深度学习分类器依赖于提取的特征。医学领域的深度学习算法引起了计算机视觉研究人员的兴趣,它在执行过程中耗费时间。提出的扩张 U-Net 模型扩展了用于提取多尺度上下文信息的感受野。基于高分辨率条件,使用大规模特征图生成大规模特征图和高分辨率条件。它提供了丰富的空间信息,可用于执行语义分割。使用 U-Net 实现语义图像分割,因为它添加了一条扩展路径来生成属于源图像中发现的特征的像素分类。现有的基于核的 SVM 模型获得了 99.15% 的准确率,非支配排序遗传算法卷积神经网络 (NSGA-CNN) 获得了 99% 的准确率,具有自适应模糊聚类的深度 Elman 神经网络获得了 98% 的准确率,3D 上下文深度监督 U-Net 获得了 92% 的准确率。然而,与现有模型相比,所提出的基于扩张 U-Net 的 CNN 模型获得了 99.5% 的准确率。关键词:脑肿瘤、深度学习分类器、扩张 U-Net CNN 模型、磁共振图像。