超滤(UF)膜通常用于下游过程,例如抗纯化和浓度的抗体,mRNA疫苗和病毒样颗粒(VLP)。超滤也仍然是涉及病毒载体和基于脂质载体的新兴细胞和基因疗法(CGT)的关键纯化工具。特别是,由于其低剪切,低结垢和可靠的性能,因此比CGT空间中的板和框架盒要优选空心纤维形式。另一方面,更适当地适用于微米大小的颗粒,例如在细胞培养灌注过程中保留细胞。图1显示了带有亚微米孔的5-50 nm和MF膜不等的UF膜的孔径分布,这些膜说明了生物过程过滤应用中使用的孔径较宽。显示的数据来自从行业中不同类型的膜获得的典型结果,以突出两种孔径面额之间的对比度。
使用超支化聚酰胺胺作为添加剂,通过非溶剂诱导相转化制备了具有改进的防污和抗生物污染性能的聚氯乙烯 (PVC) 超滤膜。PVC 通过亲核取代反应与商用聚酰胺胺纳米材料 Helux-3316 反应到铸造溶液中。通过 ATR-FTIR 和元素组成研究了纯膜和功能化膜的组成。使用荧光染料荧光胺跟踪氨基。使用表面 ζ 电位和水接触角来测量测试膜的表面电荷和亲水性。氨基的加入增加了膜的亲水性和表面孔隙率,从而提高了渗透性。功能化膜在过滤 BSA 溶液时表现出防污性能,并且比 PVC 膜的不可逆污染更低。 Helux 部分附着在 PVC 上可产生具有抗生物污染功能的膜,这可以通过带正电荷的 Helux 部分与带负电荷的细胞膜相互作用来解释。过滤过程中附着在膜表面的细胞生长减少量达到革兰氏阳性菌金黄色葡萄球菌的 1-log。该研究表明,在铸造溶液中加入浓度为 1 wt% 的超支化纳米材料可显著提高膜的性能,包括渗透性和防污潜力。