值得指出的是,第一批雷达系统早在 20 世纪 30 年代就已开发 [Watson-Watt 1945],从那时起,射频传感就已成为一个成熟的工程和应用科学领域。然而,目前的雷达硬件和计算方法主要是为主流雷达应用而开发的,这些应用通常涉及远距离检测和跟踪大型移动物体,例如空中和陆地交通管制、海事雷达、飞机防撞系统和外层空间监视以及地球物理监测等。此类应用的工程要求与现代消费应用不兼容,在现代消费应用中,传感器必须适合微型移动和可穿戴设备,在有限的计算资源上运行,在超短距离(即小于 5 毫米)内工作,消耗很少的功率,并以亚毫米精度跟踪复杂、高度可变形的弹性物体(例如人手而不是刚性飞机)的动态配置。我们不知道现有的雷达系统是否能满足上述要求。我们的研究表明,开发针对人机交互 (HCI) 优化的基于雷达的传感器需要从头开始重新思考和重新构建整个传感器架构,从基本原理开始。
值得指出的是,第一批雷达系统早在 20 世纪 30 年代就已开发 [Watson-Watt 1945],从那时起,射频传感就已成为一个成熟的工程和应用科学领域。然而,目前的雷达硬件和计算方法主要是为主流雷达应用而开发的,这些应用通常涉及远距离检测和跟踪大型移动物体,例如空中和陆地交通管制、海事雷达、飞机防撞系统和外层空间监视以及地球物理监测等。此类应用的工程要求与现代消费应用不兼容,在现代消费应用中,传感器必须适合微型移动和可穿戴设备,在有限的计算资源上运行,在超短距离(即小于 5 毫米)内工作,消耗很少的功率,并以亚毫米精度跟踪复杂、高度可变形的弹性物体(例如人手而不是刚性飞机)的动态配置。我们不知道现有的雷达系统是否能满足上述要求。我们的研究表明,开发针对人机交互 (HCI) 优化的基于雷达的传感器需要从头开始重新思考和重新构建整个传感器架构,从基本原理开始。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
为避免对受保护的海洋哺乳动物物种造成伤害并将任何潜在干扰降至最低,将对所有操作脉冲式测量设备的船只实施以下措施,这些设备发出的声音频率范围小于 180 kHz(在海洋哺乳动物和海龟的功能听力范围内),以及 CHIRP 海底剖面仪(这不适用于参数海底剖面仪、超短基线、回声测深仪或侧扫声纳;声学特性(频率、窄波束宽度、快速衰减)不会对受保护物种产生影响)。清除区是指在声源开启前 30 分钟内,声源周围需要目视清除 ESA 所列物种的区域。清除区相当于开始测量操作的最小能见度区域(见下文第 1 条)。关闭区是指声源周围必须进行监控的区域,一旦检测到 ESA 所列鲸鱼物种进入该区域或在该区域内,则可能关闭该区域。对于清理区和关闭区来说,这些都是最小能见距离,为了了解情况,PSO 应该尽可能观察该区域以外的情况。
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
公司:Voss Scientific, LLC 地点:新墨西哥州阿尔布奎基 主题:N171-085 技术类别:先进电子学 第二阶段提案标题:LUCS 的实施和演示,一种实时、超紧凑型多光谱 USPL 表征系统 SYSCOM:ONR FST 事件:NAVSEA 摘要:第二阶段的工作将把第一阶段选定的单个诊断集成到一个紧凑型便携式系统中,该系统设计用于 600-1700 nm 的近波和短波红外波段,并在选项中开发一个 3-5 m 波段系统。此外,单次相位表征技术将在极其紧凑的几何结构中实现,这对对准和光束轮廓都不敏感,同时提供详细的时间和相位轮廓。将实施先进的数据缩减算法和系统架构,单个图形用户界面 (GUI) 将显示用户可选择的、已处理的激光参数,包括实时跟踪品质因数的统计变化。关键词:激光、集成诊断、超短脉冲、综合脉冲特性、超紧凑、光谱测量、相位提取、可移动 POC:Don Voss,donv@vosssci.com
此外,还开发了准确、精密的短期和长期海浪和天气预报系统。在构件运输和浸没作业之前的一段时间内,该系统能够将预报的浪高精度控制在 10 厘米以内,从而可以在可接受的风险范围内进行浸没作业。隧道构件(TE)在预制场(PC)分批建造。码头淹没后,构件被运输到靠近 PC 场的系泊地点进行装配并等待有利的浸没天气。构件使用两个双体船浮筒浸没,并放置在海床上先前挖出的沟渠中。采用了绷紧系泊配置,以将海浪影响的运动降至最低。锚点由预先安装的板锚创建。由于隧道的总长度和安装深度,使用塔和全站仪的传统测量系统并不适用。因此,开发了新的测量方法,其中包括在浸没操作期间用于定位元件的拉线系统和超短基线 (USBL) 声学系统。使用专门设计的外部定位系统 (EPS) 对受波浪影响的 TE 进行精确定位,并将其放置在预先铺设的砂砾床上。
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制