个性化医疗、[9] 神经工程、[10] 人机界面 [11,12] 和智能假肢。[13] 通过电气方式监测生物信号可以将电子皮肤 (E-skin) 传感器与大数据、[14] 人工智能 [15] 和物联网 (IoT) 技术相结合。[16] 随着皮肤上设备的应用不断扩大,已经报道了在非传统基板(如 3D 自由曲面、皮肤和地形基板)上实现可穿戴电子产品的新方法。[8,17,18] 此外,还展示了电子皮肤的其他吸引人的功能。例如,实现光学功能以可视化与健康状况相关的信息是与人类直观交互的一个有吸引力的方向。[19] 具有自供电功能的可穿戴传感器也可以扩展其适用性。 [20,21] 无线电子皮肤系统可将测量数据传输到移动设备,并在监测健康状况的同时支持日常活动,在用户便利性方面也很有吸引力。 [22] 此外,仅传输生物信号中关键的必要信息这一可能功能是电子皮肤传感器的一个特别有吸引力的方向,因为它可以减少无线数据传输的功耗和后处理的数据数量。
在决定其组装行为中起着关键作用,基于各种形状的NP构建块可以制备出各种复杂的类似超结构,如晶体、塑性晶体和液晶。13 – 26 作为一个显著的例子,四面体最近被证明可以形成各种组装体,包括一维手性四螺旋、二维准晶体和三维基于簇的体心立方单超晶体。27 – 30 尽管在非球形NP方面投入了大量精力,但对具有特殊几何形状的各向异性NP进行系统的自组装研究仍然很少。哑铃在几何上由两个叶组成,由中间的杆连接,这是NP二聚体的最粗糙模型和最简单的非凸体。哑铃中部区域的扩大头部提供了额外的空间排斥力,以限制它们沿某些方向的组装,使它们成为自组装研究的有趣构建块。31 – 36 理论计算预测对称哑铃可以选择性地诱导取向无序退化晶体、人字形晶体和有序斜晶格晶体的形成。33,37 – 40 还进行了实验演示,包括金 ND 的平行排列和十字形二聚体,41,42 外部场下 ND 的受控取向,35,43 – 46 和