在过去十年中,使用各种方法的研究声称具有高顺势疗法效果的纳米颗粒(NP)的物质性质。当前的研究旨在使用NP跟踪分析(NTA)验证这些发现。根据欧洲药典标准制备了六种常用顺势疗法药物的独立连续稀释液 - 可溶性(凝胶症,金刚菌,kalium mur)或不溶性(杯形,阿根廷,硅)。我们用纯净的水和其有力的对照(DIL)(DIL)在纯净的水中进行了顺势疗法动态(DYNS),最高为30CH/10 60。我们还测试了容器(玻璃或PET)对溶剂对照的影响。结果我们观察到在所有DYNS,DIL和对照中,颗粒的存在在20到300-400 nm中,除了纯净的未抑制水。高顺势疗法功能中NP的大小和大小分布小于可溶源对照组中的NP,对于不溶性来源,即使是11CH以上的来源也要较大。在NP的数量中观察到了相反的行为。比较Dyn和Dil时,数量,大小,骨料或链的存在以及NP的亮度随Dyns的增加而增加,这也被观察到11CH以上。许多低强度的NP散射光,表明材料颗粒的存在。容器对NP的数量和大小具有显着影响,表明大气和浸出过程的参与。结论顺势疗法药物包含具有特定特性的NP,即使在Avogadro的数量之外稀释时也是如此。顺势疗法的增强不是一个简单的稀释。起始材料,所使用的溶剂,容器的类型和制造方法影响了这些NP的特征。这些NP的性质尚不清楚,但很可能是纳米泡和大气和容器(包括不溶性)的元素的混合物。
混合电子离子导体对于各种技术至关重要,包括在耐用,自我维持的,不受位置或环境1,2的不受限制的方式中从湿度中收获能力。已经提出了50年的混合导体3,4。最近,据称Geobacter Sulfurreducens Pili丝是发电5,6的纳米线。在这里,我们表明该功率是由G.硫核的生产的细胞色素OMCZ纳米线产生的,其电子电导率比Pili 7高20,000倍。非常明显的是,由于定向电荷通过无缝堆叠的Hemes和带电的氢键表面,纳米线显示了超高电子和质子迁移率(> 0.25 cm 2 /vs)。AC阻抗光谱和直流电导率测量,使用四个探针范德布尔和背门效率 - 效应 - 横向器设备表明,湿度会使载流子的迁移率提高30,000倍。冷却将激活能量减半,从而加速电荷传输。电化学测量结果确定将纯电子传导转换为发电的混合传导所需的电压和迁移率。高纵横比(1:1000)和亲水性纳米线表面可有效捕获水分以逆转降低氧气,从而产生巨大的电位(> 0.5 V),以维持高功率。我们的研究建立了一类新的生物合成,低成本和高性能的混合导管,并确定了使用高度可调的电子和蛋白质结构来提高功率输出的关键设计原理。
热电设备(TEDS)是固态能量转换器,在经受外部温度梯度时会产生电力,或者在配备电流时产生温度差异并用作固态冷却器。TEDS将热量转化为电力的能力,反之亦然,在过去二十年中开发了用于废热恢复和固态冷却的高效率设备的巨大研究兴趣。1 - 12个世界能源消耗的三分之二仍然消散,因为浪费了这种浪费的能量,而这种浪费的能量仅在美国就可以产生15吨的电力。13同时,冷却和热管理对于建筑物和车辆的人类舒适性以及电子和医疗设备的可靠操作和寿命至关重要。固态
对于月球表面的开发,日本国内外都在开发月球轨道站 (Gateway)、月球着陆器和月球探测车。此外,还正在研究旨在在月球表面生活的建筑和发电技术。特别是,为载人操作而设计的系统需要配备防护结构,以防可能来袭的微流星体和轨道碎片 (MMOD) 造成人员伤亡 (1)。载人航天器的典型 MMOD 防护结构是惠普尔防护罩,由称为“保险杠”的板和后壁组成,保险杠通过隔离物 (2) 连接到后壁的外表面,如图 1 (a) 所示。目前运行的国际空间站(ISS)日本实验舱(JEM)和H-II转移飞行器(HTV)均采用了三菱重工株式会社开发的MMOD防护结构,没有因微流星体或空间碎片撞击而出现功能损坏(图1(b))。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
摘要 - 在这项工作中,我们提出了一种破坏性节俭的激光雷达感知数据流,该数据流产生而不是感知环境的一部分,这些部分是基于对环境的广泛培训,或者对整体预测准确性的影响有限的。因此,所提出的方法将传感能量与训练数据进行交易,以获取低功率机器人和自动导航,以便用传感器省将,从而在一次电池充电时延长了其寿命。我们提出的为此目的提出的生成预训练策略称为径向掩盖的自动编码(R-MAE),也可以在典型的激光雷达系统中很容易实施,通过选择性激活和控制在现场操作过程中随机生成的角区域的激光功率。我们的广泛评估表明,使用R-MAE进行预训练可以重点关注数据的径向段,从而比常规程序更有效地限制了空间关系和对象之间的距离。因此,所提出的方法不仅降低了传感能量,而且还提高了预测准确性。例如,我们对Waymo,Nuscenes和Kitti数据集进行了广泛的评估表明,该方法在跨数据集的检测任务的平均精度提高了5%,并且从Waymo和Nuscenes转移到Kitti的检测任务的平均精度提高了4%。在3D对象检测中,它在KITTI数据集中的中等难度水平下,在AP中最多可增强小对象检测。即使使用90%的径向掩蔽,它在Waymo数据集中所有对象类中的MAP/MAPH中都超过了基线模型。此外,我们的方法在Nuscenes数据集上分别获得了MAP和NDS的3.17%和2.31%的提高,这表明了其在单个和融合的LIDAR相机模态方面的有效性。代码可在https://github.com/sinatayebati/radial Mae上公开获取。索引项 - lidar预训练,掩盖自动编码器,超有效的3D传感,边缘自治。
E. K. Burke,M。Hyde,G。Kendall,G。Ochoa,E。Özcan和J. Woodward,《超级神秘方法的分类:在Gendreau,M和Potvin,JY》中重新审视。 (ed。 ),《元启发学手册》,《运营研究与管理科学国际系列》,第1卷。 272,pp。 453-477。 Springer Cham,2019年。 [PDF]E. K. Burke,M。Hyde,G。Kendall,G。Ochoa,E。Özcan和J. Woodward,《超级神秘方法的分类:在Gendreau,M和Potvin,JY》中重新审视。(ed。),《元启发学手册》,《运营研究与管理科学国际系列》,第1卷。272,pp。453-477。Springer Cham,2019年。[PDF]
过量卤化铵作为成分添加剂被广泛用于钙钛矿发光二极管 (PeLED),旨在通过控制晶体度和钝化缺陷来实现高性能。然而,对于过量有机铵成分是否会影响薄膜的物理/电学性质以及由此导致的器件不稳定性,我们仍然缺乏深入了解。本文指出了在具有过量卤化铵的高效甲脒铅碘化物 (FAPbI 3 ) 基 PeLED 中性能和稳定性之间的权衡,并探索了其潜在机制。系统的实验和理论研究表明,过量卤化盐诱导的离子掺杂极大地改变了 PeLED 的性质(例如,载流子注入、场相关离子漂移、缺陷物理和相稳定性)。证明了表面清洁辅助交联策略可以消除成分调制的不利影响并在不牺牲效率的情况下提高操作稳定性,同时实现 23.6% 的高效率、964 W sr − 1 m − 2 的高辐射度(基于 FAPbI 3 的 PeLED 的最高值)和 106.1 小时的长寿命在大直流密度(100 mA cm − 2)下。研究结果揭示了过量卤化物盐与器件性能之间的重要联系,为合理设计稳定、明亮、高效的 PeLED 提供了指导。
优化酶在新型化学环境中起作用是合成生物学的核心目标,但通常会因崎,、膨胀的蛋白质搜索空间和昂贵的实验而阻碍优化。在这项工作中,我们提出了电信,这是一种将进化和实验数据融合到设计多种蛋白质变体文库的ML框架,并采用它来改善核酸酶酶的催化活性,从而降解在慢性伤口上积累的生物膜。在使用触觉和标准定向进化(DE)方法的多轮高通量实验(并行)之后,我们发现我们的方法发现,与DE相比,最高表现的酶变体明显更好,在发现多样化的高级活动性变体方面具有更好的命中率,甚至无法使用高强度的初始实验数据来设计高度,甚至能够设计出高度的初始实验数据。我们发布了一个55K核酸酶变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一,以推动ML引导设计的进一步进展。