我们提出了一个模拟量子模拟的理论框架,以捕捉实验可实现模拟器的全部范围,其动机是 Cirac 和 Zoller 首次提出的一组基本标准。我们的框架与复杂性理论中使用的汉密尔顿编码一致,在噪声下稳定,并涵盖了一系列实验可能性,例如模拟开放量子系统和使用 Lieb-Robinson 边界减少开销。我们讨论了模拟量子模拟中的可扩展性要求,特别是论证了模拟不应涉及随系统大小而增长的交互强度。我们为汉密尔顿复杂性理论中使用的小工具开发了一个通用框架,这可能与模拟模拟无关,特别是证明了在汉密尔顿局部性减少中,与尺寸相关的缩放是不可避免的。然而,如果允许额外的工程耗散资源,我们将展示一种使用量子芝诺效应绕过局部性减少不可行的定理的方案。我们的小工具框架为形式化和解决长期存在的小工具悬而未决的问题打开了大门。最后,我们讨论了模拟量子模拟中的普遍性结果。
“越小越软”是强度的逆尺寸依赖性,违背了“越小越强”的原则。它通常由表面介导的位移或扩散变形引起,主要存在于一些超小尺度(几十纳米以下)的金属材料中。在这里,利用离子束辐照的表面改性,我们在更大尺寸范围(< ∼ 500 纳米)的共价键、硬而脆的材料非晶硅(a-Si)中实现了“越小越软”。它表现为从准脆性破坏到均匀塑性变形的转变,以及在亚微米级范围内随着样品体积的减小而屈服应力的降低。提出了一个硬核/超塑性壳的分析模型来解释人为可控的尺寸相关软化。这种通过离子辐照的表面工程途径不仅对于调整小尺寸非晶硅或其他共价结合非晶态固体的强度和变形行为特别有用,而且对于非晶硅在微电子和微机电系统中的实用性也具有实际意义。© 2023 由 Elsevier Ltd 代表《材料科学与技术杂志》编辑部出版。
米切尔航空航天研究所是一家独立的、无党派的政策研究机构,旨在促进人们对利用空中、太空和网络空间领域的国家安全优势的理解。米切尔研究所的目标是:1) 向公众宣传航空航天力量在实现美国全球利益方面的优势;2) 向关键决策者介绍利用空中、太空和网络空间领域所产生的政策选择,以及保持美国作为世界领先航空航天国家地位的必要投资的重要性;3) 培养了解在空中、太空和网络空间开展行动优势的未来政策领导者。米切尔研究所坚持不在其研究和学习工作中提倡特定专有系统或特定公司的政策。
全球气候运动的兴起伴随着全球气候活动人士的公民空间遭到打压。以下是全球气候和环境活动人士面临的威胁类型——从将合法言论和集会定为犯罪的法律,到民事诉讼和人身攻击。