本研究旨在调查公司拥有的 AI 专利、公司收益、行业类型和公司规模之间的关系。指导研究的问题是:公司拥有的 AI 专利如何影响其收益,这些影响是否因行业和公司规模而异?为探讨这一问题,我们提出了三个假设:1. 公司拥有的 AI 专利对公司收益有积极影响。2. 专利对高科技行业的公司收益的贡献大于低科技行业的公司收益。3. 公司规模越大,拥有的专利对收益的影响越小。研究人员采用定量方法,对不同行业和规模的公司样本进行了多元线性回归分析。数据来自公共数据库,包括专利记录和财务报表。分析得出了关于三个初始假设的以下结论:假设 1:研究结果表明,AI 专利与公司收益之间存在正相关但统计上不显著的关系,表明可能存在积极影响,但分析无法从统计上确定这种关系。假设 2:本研究没有找到足够的证据来支持或拒绝专利对高科技行业收益的贡献大于低科技行业的假设。这可能是由于数据集或所采用的分析方法的局限性。假设 3:公司规模对专利与收益之间关系的影响仍无定论。尽管结果显示员工人数与收益之间存在正相关关系,但分析并未提供足够的证据来确定公司规模与专利所有权之间的相互作用。这些不确定的发现表明,需要进一步研究以更好地了解人工智能专利、公司收益、行业类型和公司规模之间的关系。未来的研究可以通过纳入不同行业的更详细数据、进行行业特定分析以及采用替代统计方法或纵向数据来解决本研究的局限性。这将有助于增强我们对这些因素之间复杂关系的理解,并为企业、投资者、学者和政策制定者提供更多可操作的见解。关键词:人工智能、专利、财务绩效、创新、基于资源的观点
轮状病毒疫苗对降低轮状病毒相关腹泻的发病率和死亡率做出了巨大贡献 [1,2]。据报道,轮状病毒疫苗已经能够避免大约 28,000 名五岁以下儿童死亡;然而,尽管取得了这些巨大进步,撒哈拉以南非洲和亚洲的腹泻发病率下降并不像其他地区那么明显 [1]。这是因为与高收入国家相比,中低收入国家 (LMIC) 的轮状病毒疫苗效力降低 [3-5]。有几种原因可以解释 LMIC 轮状病毒疫苗效力降低。其中包括母体免疫和非免疫因素;其中包括抗体免疫球蛋白A (IgA) 和G (IgG)、人乳低聚糖和聚糖、粘蛋白和先天成分、乳铁蛋白 (LF)、乳粘蛋白 (LA) 和腱糖蛋白C (TNC),这些成分均存在于母乳中,并通过母乳喂养被婴儿获得 [6-10]。据推测,这些母乳成分通过其抗病毒中和活性影响轮状病毒疫苗的免疫原性,这种中和活性可能抑制活疫苗病毒在婴儿肠粘膜中成功复制并诱导免疫反应。众所周知,中低收入国家的母亲接触天然轮状病毒感染的可能性更高,因此轮状病毒特异性IgA (RV-IgA) 和IgG (RV-IgG) 水平也更高 [11,12]。通过母乳转移到婴儿的抗体可能会与活疫苗病毒结合并中和它,从而影响免疫原性。我们前期工作表明,母亲体内轮状病毒特异性抗体滴度越高,婴儿接种疫苗后发生血清转化的可能性就越小 [11]。据报道,乳铁蛋白 (LF) 和乳凝集素 (LA) 具有抗病毒和抗菌活性 [13-16],我们前期工作表明,LA 水平升高与婴儿血清转化能力下降有关 [17]。其他被认为会影响血清转化的因素包括缺乏各种微量营养素(如锌和维生素 A)、肠道微生物组干扰以及其他疾病状态(如 HIV 感染和腹泻),但本文未将其包括在内 [18,19]。其他因素(如轮状病毒株变异)也被认为是导致观察到的效力改变的原因 [20,21]。
伊朗德黑兰Tandis医院泌尿外科系的泌尿外科介绍了与量子力学的基础知识兼容的一般物理信息信息的一般概念,并将香农熵作为特例。这种物理信息的概念导致了二进制数据矩阵模型(BDM),该模型预测了量子力学,一般相对论和黑洞热力学的基本结果。研究了模型与全息,信息保护和Landauer原则的兼容性。由于BDM得出了“位信息原理”后,得出了普朗克,de Broglie,Bekenstein和质量能量等价的基本方程。k eywords信息的物理理论,二进制数据矩阵模型,香农信息理论,位信息原理1。构造信息意味着一系列不可衡量的概念或可测量数量的数据。物理学中可测量信息的通常概念调用了香农熵和信息的主题。克劳德·香农(Claude Shannon)在他的开创性论文[1]中发展了信号传递的数学理论[2]。他否认了交流和相关信息理论的语义方面。根据他的理论,该信息是指减少不确定性并等于传达信息的熵的机会。他从第二种热力学定律[2],[3]中得出了熵的想法,并得出结论,信息的信息可以通过其可预测性来衡量,其可预测性越小,其携带的信息越多[2],[3]。很明显,香农对信息的定义不是唯一的,仅适合其工程要求[2],[3]。在这个信息概念中,数据的来源,渠道和接收器是通信工程的关键组成部分。香农熵(信息)仅与给定系统的统计属性有关,与系统状态的含义和语义内容无关[5]。正如他在开创性文章中强调的那样,沟通和相关信息内容的含义与工程问题无关[1]。随后,围绕着身体和生物学信息的香农概念出现了一些批评[3]。信息独立于其含义的概念是Mackay和其他人宣布的主要批评的主题[3],[4]。随后尝试为形式的信息理论增加语义维度,尤其是对香农理论[5] - [7]。香农的理论与单个信息无关,而是源消息的平均值[8]。尽管物理信息基本上与物理可测量的数量有关,但当前的物理信息概念仍然是香农引入的相同定义,并且似乎不足以用于物理系统。在Bruckner和Zeilinger的最新作品中提醒了这[9]。他们的主张主要原因是量子力学中的测量问题。换句话说,没有确定的真实
9.波特五力模型的应用 供应商的力量 评估供应商影响价格的力量 提供高质量产品的供应商可能对企业有影响力。供应商越强大,企业对他们的控制就越小。供应商的数量越少,他们可能越强大,因为供应商的选择可能有限。确定供应商在产品质量、服务、可靠性和及时交货能力方面的影响力。 买家的力量 批量购买的买家可以讨价还价以获得对自己有利的价格 企业家必须评估他们的买家压低价格的难易程度。少数强大的买家通常能够向企业发号施令。企业家应该进行市场调查,以获得有关买家的更多信息。这将取决于买家的数量、每个买家对其企业的重要性以及转向其他产品的成本。如果买家不需要企业家的产品,他们将有更大的权力决定价格和销售条款。进入威胁 如果进入门槛低,新企业很容易进入市场。如果产品或服务的供应商很少,但买家很多,那么进入市场可能很容易。如果进入市场所需的时间和金钱很少,新竞争对手很容易进入市场。如果现有企业家的企业利润丰厚,它将吸引想要从高利润中获益的潜在竞争对手。竞争对手 如果企业家的竞争对手拥有独特的产品,那么他们就拥有更大的权力。如果企业家在同一市场上有很多竞争对手,那么他的企业在他们经营的市场上就没有什么权力。企业家应该为该地区的每一家类似企业绘制一份竞争对手的概况,以便确定自己的实力以及竞争对手的实力。一些企业拥有必要的资源来发动价格战,并继续亏本销售,直到部分或所有竞争对手退出市场。 替代威胁 如果企业家的产品很容易被替代,这会削弱企业家的企业在市场上的实力。确定替代产品的卖家是否改进了他们的产品或以更低的价格出售了质量较差的商品。如果企业销售独特的产品,则不会受到替代产品的威胁。评估客户是否正在使用替代产品/服务并确定使用替代品的原因。10. SWOT 分析 – 许多工人上班迟到。波特五力分析 – 新 Dawn 酒店对类似服务收取较低的价格。Pestle – Royal Star 酒店位于失业率较高的地区。
糖尿病是全球范围内影响人类的主要慢性病之一。根据国际糖尿病联合会 (IDF) 发布的一份报告,2021 年糖尿病患者已达 5.366 亿,预计到 2045 年 20 至 79 岁年龄组的患病率将超过 7.832 亿 (1)。超过 90% 的患者患有 2 型糖尿病。在中国,预计有 1.45 亿人患有糖尿病 (2),而在美国,这一数字为 3420 万 (3)。某些测试(例如空腹血糖、2h-PG 和 HbA1c 水平)被视为合适的诊断标准 (4)。美国糖尿病协会建议使用经过验证的工具来识别和筛查受影响的成年人,以评估导致糖尿病发作的风险因素(5)。2 型糖尿病患者的主要病理缺陷包括胰岛素抵抗以及胰腺 b 细胞功能障碍导致的胰岛素分泌受损。此外,还有其他五种病理生理状况会导致糖尿病患者的葡萄糖不耐受。这些包括:脂质毒性、a 细胞产生更多的胰高血糖素、肝脏对胰高血糖素的敏感性增强、肾脏通过葡萄糖转运蛋白 2 对葡萄糖的重吸收增加,以及中枢神经系统对胰岛素抑制作用的抵抗,从而导致食欲失调和体重异常增加。所有这些因素都会使血糖水平维持在高位。加重 2 型糖尿病的其他因素包括糖毒性、炎症和氧化应激。据报道,炎症会改变某些细胞因子和趋化因子的浓度,改变白细胞的数量和活化状态,促进组织纤维化和白细胞凋亡,因此在 2 型糖尿病的病理生理学中至关重要(6-9)。糖尿病的症状包括脱水、视力模糊、突然体重减轻、多尿、多饮和多食。糖尿病患者更容易患心脏、脑和血管疾病。心血管系统疾病是糖尿病患者死亡的主要原因(10)。因此,充分关注糖尿病患者的血糖水平至关重要。定期监测和评估对于维持这些患者的适当血糖水平以及避免不必要的短期和长期并发症都很重要。正常血糖水平因各种因素而异,包括体力活动,70-180 mg/dl 被认为是避免任何突然或逐渐出现的并发症的安全范围(11)。调节和维持最佳血糖水平对于生活质量至关重要。调节得越好,糖尿病慢性并发症的可能性就越小。预防低血糖和高血糖对于有效管理糖尿病非常重要。血糖浓度受多种因素影响,最好使用历史值作为预测输入(3、12)。正确的糖尿病管理需要考虑各种因素,包括量身定制的食物摄入量、药物、胰岛素水平和身体活动,以期实现对每位患者的精确控制。目前,口服药物和胰岛素注射通常用于治疗糖尿病(13)。早期管理风险因素和适当的干预至关重要(12)。本研究旨在支持患者做出医疗或生活方式决策
简介 展望未来,高校面临着不断变化的形势。近期经济衰退带来的财政压力不断增加,政府支持减少,研究经费削减,再加上学费大幅下降和筹款困难。营利性机构和在线课程(包括 MOOC 和其他虚拟平台)也带来了破坏性威胁。1 许多机构的教师感到被他们所认为的机构内部日益增长的官僚主义引擎和日益蔓延的管理主义所排挤。总之,这些力量要求大学更加战略性和创新性地思考,但这样做的方式要符合其学术价值观和选民的意愿,而不是不加思索地采用它们有时倾向于的私营部门战略模式。本文描述了我们对高等教育机构与营利性公司的鲜明对比的理解。我们特别强调大学的“松散耦合”结构、其“政教合一”特征以及子单位的激增,这些子单位以对领导力构成独特挑战的方式放大了这种结构和特征。我们将简要回顾高校目前面临的一些重大压力。最后,我们将介绍一些领导策略,这些策略分为两个主题:保护现有系统和改变现有系统。 2 松散耦合 高等教育的领导和战略规划环境通常比公司更复杂。学校、学院和大学是组织理论家称之为“松散耦合”系统的典型例子(Orton 和 Weick,1990 年)。在松散耦合的系统中,各个元素相对于它们所嵌入的较大系统具有高度的自主性,通常会产生一种联合特征。系统某一部分的行为对另一部分的影响很小或没有影响,或者可能不可预测地引发与刺激不成比例的反应。元素之间的联系通常不为人所知或不均衡。在松散耦合的系统中,整合的力量(担心整体、其身份、完整性和未来)通常与专业化的力量相比较弱。在重要方面,中央权力来自成员,而不是从上级获得授权的成员元素。教育机构的松散耦合特性要求采用不同的领导和规划方法。无论教育工作者是否听说过“松散耦合”一词,他们都对它的动态有着本能的理解。教师之间在教学与研究之间由来已久的紧张关系如今通常表现为教师通过共同的学术兴趣与大学外的学科同事建立更多的联系(通常通过万维网),而不是与自己机构内的教师建立联系。某些院系认为自己在能力、严谨性、学术成果或一般方面都更胜一筹,这并不罕见。1 请参阅此处《创新型大学:从内到外改变高等教育的 DNA》,克莱顿·克里斯滕森和亨利·艾林合著。Jossey-Bass,2011 年。2 一般而言,机构越小,我们对高等教育机构的描述就越不适用,尽管来自小型学院的读者可能会在这幅大型机构的图景中看到他们自己的暗示。然而,关于领导策略的部分应该会引起来自小型和大型、更复杂的学术机构的个人的兴趣。
摘要:变速箱是一种机械动力传输装置,最常用于获得速度和扭矩方面的机械效益。变速箱由不同类型的齿轮组成,这些齿轮按级联顺序组装以执行预期任务。变速箱内任何旋转部件发生故障都将终止与其相关的机械系统的工作状态。这会导致行业服务中断,从而产生昂贵的赔偿。特别是在航空发动机中,它被用作辅助驱动器,为液压、气动和电气系统提供动力。这促使人们监测变速箱的健康状况。本文简要回顾了 GHCM(变速箱健康状况监测)、变速箱故障、时域特征概述、频域特征、时频域;特征提取技术和故障分类技术。本研究的结果是提供有关变速箱健康状况监测的简要信息。关键词:变速箱故障、GHCM、故障分类技术。1.简介 变速箱是一种附件驱动器,是飞机燃气涡轮发动机的一部分。附件变速箱为液压、气动和电气系统提供动力。它驱动燃油泵、油泵和测速发电机。附件变速箱通过径向驱动轴与高压压缩机耦合,变速箱所需的动力来自连接发动机涡轮和高压压缩机部分的中心轴。附件单元的动力从旋转的发动机轴通过内部变速箱输送到外部变速箱,内部变速箱为附件提供运动并将附件齿轮驱动分配给每个驱动单元 [1]。图 1 显示了航空发动机中变速箱的安装位置。在一些早期的发动机中,径向轴用于驱动每个附件单元。虽然它提供了将附件单元放置在所需单元中的灵活性,但它降低了单个齿轮的动力传输。它必须使用大型内部变速箱。由于高压压缩机出口和燃烧室之间的可用空间很小,内部变速箱的位置很复杂。由于内部变速箱和径向驱动轴的安装(干扰气体流动)导致的热膨胀和发动机性能下降,在涡轮区域比压缩机区域产生更大的问题。对于任何给定的燃气涡轮发动机,涡轮面积小于压缩机面积,这使得将变速箱安装在压缩机物理提供的空间内更容易。径向驱动轴的主要用途是将驱动力从内部变速箱传输到外部变速箱。反之亦然,即将高启动扭矩从启动器传输到高压压缩机系统,以启动发动机。最好具有最小的驱动轴直径以减少气流中断。直径越小,轴必须旋转得越快才能产生相同的功率。但是,这种直径有一个限制,因为它会增加内部应力并增加更大的动态问题,从而导致振动。中间变速箱的使用取决于发动机结构的设计及其尺寸。当没有规定将径向轴直接连接到外部齿轮箱时,中间齿轮箱组装在内部齿轮箱和外部齿轮箱之间。外部齿轮箱为每个附件单元提供安装面,并由附件驱动器组成。外部齿轮箱的位置取决于几个因素。它包裹在发动机的低前部区域周围,以减少飞机飞行时的阻力效应,并且由于它位于下部,维护人员很容易接近。如果任何附件单元发生故障,停止旋转,则可能导致故障
摘要:变速箱是一种机械动力传输装置,最常用于获得速度和扭矩方面的机械效益。变速箱由不同类型的齿轮组成,这些齿轮按级联顺序组装以执行预期任务。变速箱内任何旋转部件发生故障都将终止与其相关的机械系统的工作状态。这会导致行业服务中断,从而产生昂贵的赔偿。特别是在飞机发动机中,它用作附件驱动器,为液压、气动和电气系统提供动力。这促使人们监测变速箱的健康状况。本文简要回顾了 GHCM(变速箱健康状况监测)、变速箱故障、时域特征、频域特征、时频域概述;特征提取技术和故障分类技术。本研究的结果是提供有关变速箱健康状况监测的简要信息。关键词:变速箱故障、GHCM、故障分类技术。1. 简介变速箱是一种附件驱动器,是飞机燃气涡轮发动机的一部分。附件变速箱为液压、气动和电气系统提供动力。它驱动燃油泵、油泵和测速发电机。附件齿轮箱通过径向驱动轴与高压压缩机相连,齿轮箱所需的动力来自连接发动机涡轮和高压压缩机部分的中心轴。附件单元的动力从旋转的发动机轴通过内部齿轮箱输送到外部齿轮箱,内部齿轮箱为附件提供运动并将附件齿轮传动分配给每个驱动单元 [1]。图 1 显示了齿轮箱在飞机发动机中的安装位置。在一些早期的发动机中,径向轴用于驱动每个附件单元。虽然它提供了将附件单元放置在理想单元中的灵活性,但它降低了单个齿轮的动力传输。它需要使用大型内部齿轮箱。由于高压压缩机出口和燃烧室之间可用的空间很小,内部齿轮箱的位置很复杂。由于内部齿轮箱和径向驱动轴的安装(干扰气体流动)导致的热膨胀和发动机性能下降,在涡轮区域比压缩机区域造成了更大的问题。对于任何给定的燃气涡轮发动机,涡轮面积都小于压缩机面积,这使得将变速箱安装在压缩机物理提供的空间内更加容易。径向驱动轴的主要用途是将驱动力从内部变速箱传输到外部变速箱。反之亦然,即将高启动扭矩从启动器传输到高压压缩机系统,以启动发动机。最好使驱动轴直径最小,以减少气流干扰。直径越小,轴必须旋转得越快才能产生相同的功率。但是,直径有一个限制,因为它会增加内部应力并增加更大的动态问题,从而导致振动。中间齿轮箱的使用取决于发动机结构的设计及其尺寸。当没有提供将径向轴直接连接到外部齿轮箱的措施时,中间齿轮箱组装在内部齿轮箱和外部齿轮箱之间。外部齿轮箱为每个附件单元提供安装面,并由附件驱动器组成。外部齿轮箱的位置取决于几个因素。它包裹在发动机的低前部区域周围,以减少飞机飞行时的阻力效应,并且由于它位于下部,维护人员很容易接近。如果任何附件单元发生故障,停止旋转,则可能导致故障
铋铁氧体 (BiFeO 3 ) 纳米颗粒 K. SARDAR a 、K. ALI a,* 、S. ALTAF a 、M. SAJJAD a 、B. SALEEM a 、L. AKBAR a 、A. SATTAR b 、Z. ALI a 、S. AHMED a 、U. ELAHI a 、EU HAQ a 、A. YOUNUS aa 纳米光电子研究实验室,费萨拉巴德农业大学物理系,38040 费萨拉巴德,巴基斯坦 b 机械、机电一体化和制造工程系(新校区 KSK),工程技术大学,拉合尔,巴基斯坦 通过溶胶凝胶法合成多铁性铋铁氧化物 (BiFeO 3 ) 纳米颗粒。本研究展示了在 550 ᵒ C 下制备铋铁氧体纳米粒子的方法。在该方法中,硝酸铋 [Bi (NO 3 ) 3 .5H 2 O] 和硝酸铁 [Fe (NO 3 ) 3 .9H 2 O] 被用作起始化学剂。为了克服铋在高温下的挥发性,使用了不同重量百分比的化学品。柠檬酸被用作螯合剂。在 550 ᵒ C 下对样品进行热处理。铋铁氧体纳米粒子表现出明显的铁磁性。随着磁化强度的增加,铋铁氧体纳米粒子的尺寸减小。随着 550 ᵒ C 下化学品浓度的增加,由于重结晶,粒径减小。溶胶凝胶法有助于控制晶体的尺寸。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和紫外-可见光对制备的铋铁氧体纳米粒子样品进行表征,以获取有关表面形貌和晶体结构的信息。X 射线衍射结果提供了有关粒度和相位识别的信息。紫外-可见光提供了有关 BiFeO 3 纳米粒子带隙能量的信息。扫描电子显微镜结果提供了不同分辨率下纳米粒子的表面形貌和晶粒尺寸的信息。 (2019 年 9 月 23 日收到;2020 年 1 月 22 日接受) 关键词:纳米粒子、溶胶凝胶、氧化铋铁、带隙 1. 简介 在所有多铁性材料中,铋铁氧体 (BiFeO 3) 是一种在钙钛矿结构中显示反铁磁和铁电序参数共存的材料。它以块体形式早已为人所知。 BiFeO 3 在尼尔温度 (TN =643 ᵒ K) 下表现出反铁磁现象,在居里温度 (T c =1103 ᵒ K) 下表现出铁电现象。研究表明,尽管名称如此,BiFeO 3 并非铁氧体结构,而是钙钛矿结构。在块体中,BiFeO 3 被描述为具有空间群 R 3 C 和菱面体扭曲的铁电钙钛矿。晶格参数为 C hax = 13.87Ȧ、ar = 5.63Ȧ、a hax = 5.58Ȧ 和 α r = 59.350。室温下的最大极化为 90µ/cm 2 至 100µ/cm 2。目前对铋铁氧体的研究表明,如果粒子尺寸大于磁性,则磁性会消失,晶体尺寸越小磁性越强。在纳米粒子中,磁性导致螺旋序被抑制(Manzoor 等人,2015 年)。来自天体化学活动的 Bi 3+ 电子离子对起源于铁电序(T c ∼ 830 ᵒ C)。在此类材料中,d 需要不同的填充状态来转换金属离子在铁电和磁性中的状态(Johari,2011 年)。室温下的铋铁氧体是铁电性的,因为沿着钙钛矿结构的一个方向自发电极化是定向的。铁电态导致铋离子相对于 FeO 6 八面体的较大位移,这导致了一些重要的后果。沿 <111> 方向存在 BFO 铁电极化。它导致八种可能的极化方向。通过使用电场,可以通过切换的可能性来控制磁态
史蒂夫·刘易斯(Steve Lewis)00:00史蒂夫(Steve),欢迎谈到Mol Bio,这是一个有关分子生物学及其在生命科学中的趋势应用的播客系列。我是您的主人,史蒂夫·刘易斯(Steve Lewis),我想欢迎您进入我们所谓的Mol Bio分钟。这些是这个季节的迷你剧集,我们将在整集之间发行。常规的完整剧集将继续按常规的每月时间表发布。这些MOL生物分钟的长度较短,并且会在流媒体平台中使用我们的艺术品略有变化,以便您可以轻松地发现这些情节。他们将以我们在Thermo Fisher Scientific内部拥有的一些惊人才能,我们的扬声器将旋转以涵盖我们认为使用分子生物学方法在实验室中日常工作的人非常相关的各种主题。今天,您将听到Augustėužuotait的听到,谈到琼脂糖凝胶电泳中不同形式的DNA的迁移。我们希望您学到一些有用的东西。AugustėUžuotaitė01:13大家好。 我很高兴加入这个惊人的Mol Bio播客。 我的名字叫奥古斯(August),今天我们将潜入迷人的凝胶电泳世界,这是几乎每个生物学实验室中的主食。 但首先,您可能会问什么凝胶电泳是什么? 好吧,想象一个赛道,但是我们有DNA分子,而不是汽车或跑步者。 他们没有参加终点线,而是在凝胶上赛车。 就像在任何种族中一样,并非所有赛车手都是一样的。 现在,这里的凝胶不像头发中的凝胶。 然后AugustėUžuotaitė01:13大家好。我很高兴加入这个惊人的Mol Bio播客。我的名字叫奥古斯(August),今天我们将潜入迷人的凝胶电泳世界,这是几乎每个生物学实验室中的主食。但首先,您可能会问什么凝胶电泳是什么?好吧,想象一个赛道,但是我们有DNA分子,而不是汽车或跑步者。他们没有参加终点线,而是在凝胶上赛车。就像在任何种族中一样,并非所有赛车手都是一样的。现在,这里的凝胶不像头发中的凝胶。然后DNA分子具有不同的序列和构象,并且每个序列具有独特的速度。因此,这种速度或迁移率使我们能够将它们分开并分析它们。这是一个多孔矩阵,DNA分子在这些毛孔中操纵。它们越小,可以导航越快。,但它比大小要多。序列,对吗?ATS,可以影响其速度的DNA的GC。,然后是形状或构象。是线性的,是圆形的还是超级盘绕的?每个人都对迁移速度有自己的影响,并增加了该DNA种族的复杂性层。对于那些想要视觉的人,我会在这里为您服务。在马拉松比赛中,穿着不同尺寸的跑步者穿着不同的鞋子或选择不同的路径。那是您在电泳过程中凝胶中的DNA。因此,我们将从单链DNA和双链DNA的基础知识开始。然后,我们将其踢出一个缺口,讨论其他形式的DNA。,当然,我们将您指向资源,您可以在其中找到有关这些主题的更多信息。所以想象一下,您已经从某个供应商那里订购了一个500个基对双链DNA字符串,但这在货物中出乎意料的绕道而行。发生了很多事情,在发货期间经历了一些温度波动。现在您的PI或您的老板,希望您在开始实验之前检查DNA是否仍然完好无损; Wee不想浪费更多的试剂。这是您对凝胶电泳的理解。您需要选择正确的凝胶类型,缓冲液和电泳系统。将其视为设置DNA分子的赛道。您需要一个DNA梯子。这就像您的标尺一样,可以根据其大小来测量DNA分子。然后是决策。您应该加载多少样品?您应该设置什么电压?您应该让凝胶运行多长时间?这些就像设定比赛的距离和节奏。