符合可持续发展目标的能源转型要求在大多数能源需求领域迅速采用可再生能源 [1,2] 。热能存储 (TES) 具有在发电、工业和建筑等不同领域实现可再生能源高份额的巨大潜力 [3,4] 。TES 的优势特性包括可变的存储容量和持续时间、灵活的供需脱钩、灵活的集成方式 [5] 和生命周期优势,引起了各个能源市场的特别关注。根据 IRENA 的符合《巴黎协定》的能源转型情景 [6] ,预计未来 10 年安装的 TES 容量将增加三倍,从 2019 年的 234 GWh 增加到 2030 年的至少 800 GWh。
Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
Jean-Pierre BEDECARRATS 教授,LATEP,波城及阿杜尔地区大学 Kévyn JOHANNES 讲师(HDR),CETHIL,Claude Bernard 里昂第一大学 评审团组成: 主席:Régis OLIVES 教授,PROMES,佩皮尼昂 Via Domitia 大学 考官:Christian CRISTOFARI 教授,SPE,科西嘉岛大学 考官:Yilin FAN CNRS 研究官员(HDR),LTEN,南特大学 论文指导:Lingai LUO CNRS 研究主任,LTEN,南特大学 联合论文指导:Jérôme SOTO 副研究员,LTEN,南特大学 & 教师,ICAM 联合论文指导:Nicolas BAUDIN 讲师,LTEN,南特大学
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:热能储存系统在可再生能源的利用和开发中起着至关重要的作用。在过去的二十年里,单罐温跃层技术由于与传统的双罐储存系统相比具有更高的成本效益而受到广泛关注。本文重点阐明温跃层 TES 系统的性能指标以及不同影响因素的影响。我们收集了现有文献中所使用的各种性能指标,并将其分为三类:(1)直接反映储存热能的数量或质量的指标;(2)描述冷热地区热分层水平的指标;(3)表征温跃层罐内热流体动力学特征的指标。对这三类指标进行了详细的分析。此外,还系统讨论了相关的影响因素,包括传热流体的注入流量、工作温度、流量分配器和进出口位置。该工作提供的全面总结、详细分析和比较将为未来温跃层TES系统的研究提供重要的参考。
在本文中,已经进行了有关调节太阳能(CSP)植物存储系统的热级存储性能的文献综述。储存热量材料的效率取决于储存过程,例如感应热量存储,潜在热量存储和热化学化合物以及它们的性质。这项研究专注于明智的储存材料,尤其是使用生态材料的热级存储系统(DMT),该材料具有很高的潜力(35%),以降低CSP成本。有可能使用Natu的岩石,行业废物,并为使用一个水箱在一个称为包装床的床上开发材料。热储存量应具有一些最佳参数(粒子直径小于2 cm,并且良好的热物质特性),以实现更好的热储存性能(热循环效率,提取因子)。但是,由于存储系统孔隙率的差异以及储罐壁上的应力,由于较大的天然岩石是无法控制的(大直径)(大直径),并且可以驱动到热跃层降解,灾难性的热棘轮和较差的热分层。也可以在低速和HTF的良好热物质特性下实现更好的热储存效率。应优化储罐的高度,高度,孔隙率,形状和位置以提高存储效率。
将基于先进吸收式制冷机的高效热制冷技术以及可选的其他服务集成到供热和制冷网络中,需要能够在 100 ºC 以上的温度下输送能量(这是水存储的物理极限)。因此,到目前为止,只有可管理的能源(如化石能源(天然气或煤炭)和生物质)才能满足需求,例如,性能系数 (COP) 大于 1 的双效吸收式制冷机。将间歇性热能源(如太阳能)集成到中温应用中,需要开发基于在此温度范围内(即 130 至 300 ºC 之间)性能稳定的流体的存储选项。
在本研究中,采用计算流体动力学 (CFD) 方法评估基于河卵石填充床的工业规模热能存储 (TES) 系统的热分层程度。TES 集成到使用空气作为传热流体的参考聚光太阳能发电厂中。根据基于所谓的能量矩或高度加权能量进入填充床的无量纲 MIX 数,定性评估热分层的瞬态演变。得到的分层效率范围在 0 到 1 之间,理论阈值分别由完全混合和理想分层的 TES 的能量矩给出。分析的 30 个连续循环的特点是 12 小时充电,然后是 12 小时放电。结果表明,TES 系统在 20-22 个循环后达到稳定工作状态,平均分层效率约为 0.95。 CFD 模拟采用 ANSYS 的 Fluent 14.5 代码执行。© 2015 作者。由 Elsevier Ltd. 出版。同行评审由 EUROSOLAR(欧洲可再生能源协会)负责。