由 NAMPET - CDAC & MEITY、GoI 3 资助的项目,为工业应用设计和开发基于 WBG 设备的高电流转换器
摘要:提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统型数,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换型数,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强等优点。因此,本文将FLC引入高型控制系统,以FLC的输出作为积分器的增益来控制积分器的通断,达到动态切换型数的目的,并在实验中得到成功验证。 IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。另外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型归约算法,即加权梯形Nie-Tan(WTNT)。与传统类型归约算法相比,WTNT具有更快的计算速度和更好的稳态精度,且已成功应用于实时控制系统,有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC及IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度、以及更强的处理不确定性的能力。
摘要:本文提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统类型,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换类型,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强的优点。因此本文将FLC引入高型控制系统,利用FLC的输出作为积分器的增益来控制通断,达到动态切换型的目的,并在实验中成功验证。IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。此外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型降阶算法,称为加权梯形Nie-Tan(WTNT)。与传统降阶算法相比,WTNT具有更快的计算速度和更好的稳态精度,并已成功应用于实时控制系统,具有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC和IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度和更强的处理不确定性的能力。
更直观的输入设备用于游戏交互,凝视是一种快速而自然的输入方法,也可以被利用[18]。Jonsson 比较了眼球和鼠标控制作为两个三维 (3D) 计算机游戏的输入,发现凝视控制更准确,游戏体验更令人愉快和投入 [3]。Smith 和 Graham 研究了几种游戏类型的眼球输入,主要是 3D 导航。他们的结果表明,参与者在使用眼动仪作为游戏输入设备时感觉更加沉浸 [4]。Kenny 等人。开发了一款第一人称射击 (FPS) 游戏,可同时记录眼动追踪数据、视频数据和游戏内部数据。他们发现玩家大部分时间都注视着屏幕中心 [5]。这些结果提出了将凝视集成到现代游戏应用中的前景。
除了上述所有缺点之外,最常见的缺点是所有这些方法都需要额外的设备。已经开发了一个系统来解决这些缺点。所提出的系统的主要优点是使用灵活,无设备成本,不浪费时间,易于访问[6]。课堂考勤系统基于人脸识别技术,结合RFID技术。它有效地实现了课堂上学生的身份确认。通过算法的实时测试,它完全满足了课堂上出勤时间的要求,降低了课堂的出勤成本,并有效地解决了签名问题等问题[7]。对于Web服务器平台,使用XAMPP软件。XAMPP是具有完整PHP,Apache和MySQL Web开发环境的软件。XAMPP软件是一个免费的开源Web服务器,用于本地开发基于Web的应用程序。SQL是一种专用编程语言,旨在管理关系数据库管理系统中保存的数据。XAMPP中的mySQL工具是PHPMyAdmin。要将唯一ID存储在学生证中,需要mySQL。在 mySQL 中,创建了四张表,包括教职员工表、学生表、学生出勤表和学生成绩表 [8]
摘要:自动轮椅是提高残疾人行动能力的重要工具。计算机和无线通信技术的进步促进了智能轮椅的提供,以满足残疾人的需求。本研究论文介绍了语音控制电动轮椅的设计和实现。该设计基于语音识别算法,对驱动轮椅所需的命令进行分类。自适应神经模糊控制器已用于生成启动轮椅电机所需的实时控制信号。该控制器依赖于从避障传感器和语音识别分类器接收到的真实数据。轮椅被视为无线传感器网络中的节点,以便跟踪轮椅的位置并进行监督控制。模拟和运行实验表明,通过结合软计算和机电一体化的概念,实现的轮椅变得更加复杂,并为人们提供了更大的移动性。
独特的中央生产过程的测量将使大型强子对撞机物理项目扩展到电弱领域和 QCD 领域成为可能,并且对物理的特殊敏感性超出了标准模型。为此,最近安装了 CMS-TOTEM 精密质子光谱仪,旨在在高亮度大型强子对撞机的正常操作条件下运行。光谱仪由位置和时间探测器组成,安装在距 CMS 两侧交互点约 210 m 的位置,位于称为“罗马罐”的移动结构内,可让您更接近光束。从相互作用中完好无损地出现的散射质子,仅损失了一小部分动量,被光束包络外部的大型强子对撞机磁铁偏转,并用硅像素探测器平面进行测量。相反,需要时间探测器来确定主顶点,利用两侧两个质子的到达时间信息,并在此基础上大大减少由于许多堆积事件而导致的背景。由于探测器将受到高辐射注量(估计约为 3 × 10 15 n eq / cm 2 ),因此 CT-PPS 跟踪器选择了所谓的 3D 硅像素传感器。来自三个主要制造商(CNM、FBK 和 SINTEF)的传感器在实验室和辐照前后的光束上进行了测量,以评估其特性和性能。最终探测器中使用了 CNM 传感器,以及为 CMS 像素跟踪器第一阶段升级而开发的读出芯片。两个六层空间站在 2016/2017 年大型强子对撞机冬季停运结束时进行了组装、测试和安装。探测器的调试正在进行中,通过使用从中心像素跟踪器开始开发的采集软件。检测器已经过校准,能够在 CMS 采集链内获取数据。第一次比对运行的数据已成功收集,分析正在进行中。
(1) 电缆长度从 1.5 m 到 10.0 m 不等,可根据要求提供。所有技术数据均为平均值,基于 20 °C 的环境温度。安装时请注意,活塞杆必须朝上,执行器管上的 PG 电缆压盖必须朝下。不同的安装位置需要事先获得制造商的书面批准。
RFID 提供自动化数据输入,并减少与何时何地访问、维护或移动管道、阀门或其他设备相关的信息输入错误。例如,McIntyre 说,仅仅找到一个永久安装在地下的基础设施就是一项困难且容易出错的任务。即使工人使用金属探测器来识别管道的位置,并输入每个项目的 GPS 数据,如果没有 RFID,仍然很难确定哪件设备正在维护、检查或维修。有了 RFID 系统,这些数据就会自动收集并在现场查看。系统会读取每个标签,用户也可以通过读取标签上传有关他们对标记项目所执行工作的详细信息。