摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
当我们周围的空气被压缩时,其水蒸气和颗粒浓度会急剧增加。例如,将室内空气压缩至 7 bar(e)/ 100 psig 会使蒸气含量或湿度增加约 8 倍,随后冷却会形成液态水。水量取决于具体应用。压缩空气实际上可以包含三种形式的水:液态水、气溶胶(雾)和蒸气(气体)。因此,从压缩空气中去除水分的有效方法至关重要。
大力鼓励促进科学、自动化和技术融合以解决 Cobb 挑战的研究项目。CRI 寻求与研究人员合作,这些研究人员考虑如何使用技术和自动化来支持本申请中确定的关键重点领域内的解决方案。人工智能、数据系统收集、数据系统管理、机器人技术和/或自动化是 Cobb 寻求利用的技术,以改进我们的基因产品和生产效率。大力鼓励包括应用生物技术进行品种改良在内的战略研究。