由于脑电图 (EEG) 的非侵入性和高精度,EEG 和人工智能 (AI) 的结合经常被用于情绪识别。然而,EEG 数据的内部差异已成为分类准确性的障碍。为了解决这个问题,考虑到来自性质相似但不同领域的标记数据,领域自适应通常提供一个有吸引力的选择。大多数现有研究将来自不同受试者和会话的 EEG 数据聚合为源域,忽略了源具有一定边际分布的假设。此外,现有方法通常仅对齐从单个结构中提取的表示分布,并且可能仅包含部分信息。因此,我们提出了用于跨域 EEG 情绪识别的多源和多表示自适应 (MSMRA),它将来自不同受试者和会话的 EEG 数据划分为多个域,并对齐从混合结构中提取的多个表示的分布。使用两个数据集 SEED 和 SEED IV 在跨会话和跨主题传输场景中验证所提出的方法,实验结果证明我们的模型在大多数情况下比最先进的模型具有更优越的性能。
公众持股量,本公司已发⾏股本总额约,本公司已发⾏股本总额约28.44%将计算在公众持股量内,符合上市规则第,8.08条规定的最低百分比。,(i),紧随全球发售后,概无承配⼈将单独获配售本公司经扩⼤已发⾏股本10%以上;(ii)于上市后,除和达香港及杭⾦投,除和达香港及杭⾦投,共29,829,738 股股份(相当于我们的已发⾏股本总数约12.1616%)市时并无持有公众⼈⼠所持h股50%以上,符合上市规则第8.08(3)条及第8.24条的规定;及(iv)上市时至少有300名股东,符合上市8.08(2)8.08(2)条规定。条规定。开始买卖情况下,h股股票⽅会于香港时间2024年11⽉11⽉28⽇(星期四) (⽇(星期 ⽇(星期)上午九时正在联交所开始买卖。H股将以每手200股h股进⾏买卖。h股进⾏买卖。h股进⾏买卖。2566。
公司控股股东为 Anji Microelectronics Co. Ltd. ,无实际控制人。现场检查人
摘要 — 使用基于脑电图 (EEG) 的脑机接口 (BCI) 来区分运动想象是一项挑战,因为它涉及大量的数据采集阶段,需要用户付出大量的努力。为了解决这个问题,一种方法是使用无监督域自适应,其中使用来自多个受试者的数据构建分类模型,并且仅使用来自目标用户的未标记数据进行模型校准。然而,由于来自运动想象的大脑模式因人而异,因此在使用多个受试者构建分类模型时必须考虑每个受试者的可靠性。因此,在本文中,我们提出了 Selective-MDA,它对每个源受试者执行域自适应,并根据它们的域差异有选择地限制影响。为了评估我们的方法,我们使用两个公共数据集 BCI 竞赛 IV IIa 和自动校准和循环自适应数据集来评估我们的结果。我们通过比较基于差异度量选择不同数量的源域时的判别性能来进一步研究源选择的影响。我们的结果表明,Selective-MDA 不仅将多源域适应性融入跨受试者运动意象辨别,而且还突出了在使用来自多个受试者的数据进行模型训练时源域选择的影响。
摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
所有 Thermaltake TT RGB PLUS 产品均可连接到 Razer Chroma 生态系统。安装 TT RGB PLUS 软件和 Razer Synapse 3。