获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 内存计算(IMC)是机器学习(ML)数据密集型计算加速器的最有希望的候选者之一。用于尺寸降低和分类的关键ML算法是主要成分分析(PCA),它在很大程度上依赖于经典的von Neumann架构未优化的矩阵矢量乘法(MVM)。在这里,我们提供了基于IMC的新PCA算法的实验演示,该算法基于功率迭代和在4 kbit的电阻切换随机访问存储器(RRAM)中执行的放气。威斯康星州乳腺癌数据集的分类准确性达到95.43%,接近浮点的实施。我们的模拟表明,与商业图形处理单元(GPU)相比,能源效率有250倍,因此在现代数据密集型计算中支持IMC的能源有效ML。