1. 吉林华微电子有限公司的产品销售方式为直销或代理销售,客户订货时请与我公司核实。 2. 我们强烈建议客户在购买我公司产品时仔细查看商标,如有任何问题,请随时与我们联系。 3. 电路设计时请不要超过器件的绝对最大额定值。 4. 吉林华微电子有限公司保留对本规格书进行更改的权利,如有更改,恕不另行通知。
这40〜150V SGT MOSFET非常适合汽车内部的应用。根据AEC-Q101质量标准对其长期可靠性进行了测试。JMSL0406AGQ及其双DIE变体JMSL0406AGDQ在车身控制模块(BCM)中很受欢迎,例如低功率DC电动机驾驶。r ds(on)降至13m,JMSH041AGQ适合中/高功率直流电动机的功率效率要求。典型的应用是:多路电动座椅,电源后挡板,集中式门锁,ESC(电子稳定控制)。在V ds_max = 100V处,并在低调的PDFN5x5-8L软件包中组装,JMSL1018AGQ非常适合在信息娱乐/ADAS单元的平板显示器显示中LED背光。相比之下,JMSL1020AGDQ同时在较大面板中同时驱动两个高亮度LED。
本文所包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请或要获得的结果。这些信息通常基于实验室的小型设备,不一定表明最终产品性能或可重现性。提出的配方可能没有进行稳定性测试,仅应作为建议的起点。由于在处理这些材料时商业上使用的方法,条件和设备的变化,因此没有对产品适用于披露的申请的适用性。全尺度测试和最终产品性能是用户的责任。Lubrizol Advanced Materials,Inc。不承担任何责任,并且客户对除Lubrizol Advanced Materade,Inc。的直接控制外的任何用途或处理任何材料都承担所有风险和责任。卖方不对明示或暗示的担保,包括但不限于对特定目的的适销性和适合性的隐含保证。本文中没有任何包含在未经专利所有者许可的情况下练习任何专利发明的授权,也不应将其视为诱因。Lubrizol Advanced Materials,Inc。是Lubrizol Corporation的全资子公司。
摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
如需更多信息或说明,请联系供应链办公室(电话:3224360/9992400/9987085)或发送电子邮件至 tenders@efl.com.fj