大于 80 Hz 的高频振荡 (HFO) 具有独特的特征,可将其与时频表示中可以充分证明的尖峰和伪影成分区分开来。我们引入了一种无监督的 HFO 检测器,它使用计算机视觉算法在二维 (2D) 时频图上检测 HFO 标志。为了验证检测器,我们引入了一个基于具有高斯包络的正弦波的 HFO 分析模型,可以推导出时频空间中的解析方程,这使我们能够在时域中常见的 HFO 检测标准与计算机视觉检测算法使用的频域标准之间建立直接对应关系。检测器在时频表示上识别潜在的 HFO 事件,如果满足有关 HFO 频率、振幅和持续时间的标准,则将其归类为真正的 HFO。根据分析模型,在存在噪声的情况下,对检测器进行了模拟 HFO 的验证,信噪比 (SNR) 范围从 -9 到 0 dB。检测器的灵敏度在 SNR 为 -9 dB 时为 0.64,在 -6 dB 时为 0.98,在 -3 dB 和 0 dB 时 > 0.99,而其阳性预测值均 > 0.95,无论 SNR 如何。使用相同的模拟数据集,我们的检测器与四个之前发布的 HFO 检测器进行了对比。F 度量是一种同时考虑灵敏度和阳性预测值的组合指标,用于比较检测算法。我们的检测器在 -6、-3 和 0 dB 时超越其他检测器,在 -9 dB SNR 时拥有仅次于 MNI 检测器的第二好 F 分数(0.77 对 0.83)。研究人员在 6 名患者的一组 36 个颅内脑电图 (EEG) 通道上测试了在临床记录中检测 HFO 的能力,其中 89% 的检测结果由两名独立审阅者验证。结果表明,基于时频图中的 2D 特征对 HFO 进行无监督检测是可行的,并且其性能与最常用的 HFO 检测器相当或更好。
生成AI(Genai)技术的迅速崛起将诸如Openai的Sora之类的创新视频生成模型带到了前方,但是由于其高碳足迹,这些进步带来了巨大的可持续性挑战。本文介绍了以碳为中心的视频生成案例研究,从而对该技术的环境影响进行了首次系统研究。通过分析开放式文本对视频模型的开放式索拉(Openai Sora)模型,我们将迭代扩散降解过程确定为碳排放的主要来源。我们的发现表明,视频生成应用比基于文本的Genai模型要大得多,并且它们的碳足迹在很大程度上取决于剥离步骤数字,视频分辨率和持续时间。为了促进可持续性,我们建议在高碳强度期间整合碳感知信用系统并鼓励离线产生,为Genai提供环保实践的基础。
虽然纵向超扫描研究仍然相对罕见,但它对于记录大脑间同步性的变化非常有价值,而大脑间同步性的变化可能反过来决定了行为在社会环境中如何发展和演变。这种实验方法的普遍性和生态效度取决于所选成像技术是否可移动——功能性近红外光谱 (fNIRS) 满足了这一要求。fNIRS 最常用于检查亲子二元组中大脑间同步性和行为的发展。在本文中,我们认为,关注纵向和代际超扫描将更广泛地造福社会和认知神经科学领域。我们认为,这种方法对于理解代际社会动态背后的神经机制特别重要,并且可能对评估心理和社会干预的进展至关重要,其中许多干预措施都处于代际背景下。根据我们的立场,我们强调了跨代研究的领域,这些领域有望通过使用移动设备进行纵向超扫描而得到加强,描述了现实世界中跨代测量可能出现的挑战,并提供了潜在的解决方案。
微生物相互作用对于维持海洋生态系统功能至关重要,但是它们的动态性质和复杂性在很大程度上尚未探索。在这里,我们使用关联网络来研究古细菌,细菌和picoeukaryotes之间在热带和亚热带全球海洋的不同深度和地理区域中的生态相互作用。我们的发现表明,潜在的微生物相互作用随深度和地理规模而变化,表现出高度异质的分布。有几种潜在的相互作用是全球性的,这意味着它们发生在相同深度的区域,而11-36%的区域是特定深度的区域。巴基流动带的全球关联比例最低,区域关联随深度的增加。此外,我们观察到,尽管微生物垂直分散,大多数地表水关联并不持续在更深的海洋层中。我们的工作有助于更深入地了解热带和亚热带全球互动,这对于应对全球变化带来的挑战至关重要。
运动想象脑机接口 (MI-BCI) 已成为神经康复领域的一项很有前途的技术。然而,目前的多类 MI-BCI 的性能和计算复杂度尚未得到充分优化,而且很少研究对运动想象任务中个体差异的直观解释。在本文中,首先将精心设计的多尺度时频分割方案应用于多通道脑电图记录以获得时频片段 (TFS)。然后,利用基于特定包装器特征选择规则的 TFS 选择来确定最佳 TFS。接下来,使用发散框架中实现的一对一 (OvO)-divCSP 来提取判别特征。最后,利用一对其余 (OvR)-SVM 根据选定的多类 MI 特征预测类标签。实验结果表明,我们的方法在两个公开的多类 MI 数据集上取得了优异的性能,平均准确率为 80.00%,平均 kappa 为 0.73。同时,提出的 TFS 选择方法可以显著减轻计算负担,同时准确率几乎没有降低,证明了实时多类 MI-BCI 的可行性。此外,运动想象时频反应图 (MI-TFRM) 是可视化的,有助于分析和解释不同受试者之间的表现差异。
1.1.1 本项目设计原则报告列出了构成 A66 北部跨奔宁 (NTP) 项目(位于彭里斯的 M6 40 号交叉口和 Scotch Corner 的 A1 交叉口之间,简称“项目”)的方案的项目范围和方案特定设计原则(“设计原则”)。本报告中包含的设计原则实施了第 2 节中列出的项目总体设计愿景,并响应了项目环境影响评估中收集的证据基础,特别是关于将项目纳入其敏感和高质量的环境背景。本报告的目的是列出将根据其进行项目详细设计的设计原则。设计原则适用于项目永久形式的设计;它们不适用于临时施工阶段。还应注意,这些项目设计原则与为该项目制作的说明性项目设计报告是分开的,该报告说明了该项目对国家公路“良好设计之路”的设计响应。
A 面积 a 加速度、半长轴长度、声速 B i 原子总数 B 磁感应强度/磁通密度 b 半短轴长度 c 光速[299.792 x 10 6 m/s] c ∗ 特征速度 c D 阻力系数 ck 质量分数 c L α 升力系数 cp 恒压比热容 c T 推力系数 cv 恒容比热容 D 阻力 E 期望 E 电场 E KE 粒子动能 E pot 粒子势能 e 比机械能、比能 F 力、焦点 G 吉布斯自由能 G 万有引力常数[6.674 x 10 − 11 m 3 /(kg s 2 )]、单位体积吉布斯自由能、质量通量 g 比吉布斯自由能 H 焓 H 单位体积焓 h 比角动量、比焓、高度、普朗克常数 [6.626 x 10 − 34 Js] I 冲量、转动惯量、电流 I sp 比冲量 i 倾角 J 2 非球形地球纬向谐波(1.0826 x 10 − 3 ) j 电流密度 K 燃烧表面积与喷嘴喉口面积比 K c 基于浓度的平衡常数 K p 基于分压的平衡常数 KE 动能 k 等效弹簧常数 kb 反向反应速率、玻尔兹曼常数 [1.380 x 10 23 J/K]
1. 耶鲁大学心理学系,美国康涅狄格州纽黑文 2. 罗格斯大学脑健康研究所精神病学系,美国新泽西州皮斯卡塔韦 3. 墨尔本大学青少年心理健康中心 Orygen,澳大利亚墨尔本 4. 石溪大学心理学系,美国纽约州石溪 5. 斯坦福大学医学院斯坦福神经科学跨部门项目,美国加利福尼亚州斯坦福 6. 宾夕法尼亚大学心理学系,美国宾夕法尼亚州费城 7. 宾夕法尼亚大学佩雷尔曼医学院精神病学系,美国宾夕法尼亚州费城 8. 哈佛医学院精神病学系,美国波士顿 9. 麦克莱恩医院抑郁、焦虑和压力研究中心,美国波士顿 10. 康奈尔大学心理学系,美国纽约州伊萨卡 11. 麦克莱恩医院精神病学技术研究所,美国波士顿12. 哈佛医学院精神病学系,美国波士顿 13. 耶鲁大学精神病学系,美国纽黑文 14. 耶鲁大学吴仔研究所,美国纽黑文 15. 新加坡国立大学杨潞龄医学院睡眠与认知中心及转化磁共振研究中心,新加坡,新加坡 16. 新加坡国立大学电气与计算机工程系,新加坡,新加坡 17. 新加坡国立大学 N.1 健康研究所,新加坡,新加坡 18. 新加坡国立大学杨潞龄医学院医学系、人类潜能转化研究项目及数字医学研究所(WisDM),新加坡 19. 新加坡国立大学综合科学与工程项目(ISEP),新加坡,新加坡 20. 麻省总医院马蒂诺斯生物医学成像中心,美国查尔斯顿
本文档广泛介绍了将原生和跨域 AI 纳入下一代网络时需要考虑的功能方面。首先简要概述了 AI 在全球标准组织(包括 3GPP、O-RAN 和 ETSI-ZSM)中的现状。报告在无线网络环境中对原生和跨域 AI 这两个术语进行了简明的定义,然后讨论了 AI 对架构的影响。讨论了跨多层提取大量不同数据的挑战,以及相应的数据建模、格式化和表示要求。统一的数据提取模型正在成为一项关键要求。强调了分布式和边缘智能对于解决无线网络中复杂的多层问题的重要性,以及这种分布式架构中的可信度概念。讨论了大规模分布式智能的推动因素,包括 HPC 平台和附带的软件平台(包括开源)。描述了意图驱动管理的新兴范式及其与 AI/ML 的相互作用。讨论了在分解式 RAN 之间以及 RAN 和 CN 之间进行协作 AI 的必要性。本研究报告是 O-RAN nGRG 首次尝试调查 AI/ML 在下一代网络中的应用情况,并在此基础上为对每个突出显示的领域进行进一步探索奠定了基础。
• 2023年在多个方面创下了纪录: - 美国公司在欧洲的分支机构的销售额达到创纪录的3.8万亿美元;欧洲公司在美国的分支机构的销售额达到创纪录的3.1万亿美元。 - 2023年,美欧商品贸易额达到1.22万亿美元的历史新高——是美中商品贸易额5,750亿美元的两倍。 - 美欧商品贸易额达到创纪录的9,460亿美元,比美中商品贸易额5,750亿美元高出39%,比欧盟-中国商品贸易额7,980亿美元高出16%。 - 美国对欧洲的商品出口达到创纪录的4,980亿美元。 - 美国公司在欧洲的分支机构收入估计为3,500亿美元,创历史新高;美国欧洲分支机构收入估计为1,900亿美元,创历史新高。 - 美国成为欧洲最重要的液化天然气(LNG)和石油供应国,占欧盟LNG进口量的50%和欧盟石油进口量的18%。 - 欧洲成为美国原油的最大买家和美国最重要的LNG出口市场,占2023年美国LNG出口量的60%以上,是美国流向亚洲的两倍。