视觉同时定位和映射(VSLAM)在众多新兴应用中起关键作用,其中包括自动驾驶和机器人导航。它主要利用图像传感器捕获的连续帧来进行定位并构建高清图。但是,现有的方法主要集中于构建可靠和准确的VSLAM系统,而几乎没有研究现有VSLAM系统的脆弱性。为了填补空白,我们引入了AOR(dversary是R oad)攻击,该攻击可以有效地改变定位和映射结果,而无需合法用户检测到广泛使用的VSLAM系统的结果。为此,我们对现有的VSLAM系统进行了深入研究,发现这些系统对环境质量变化非常敏感。在这种见解的基础上,我们设计了一种新颖的对抗斑块生成机制,该机制可以产生不明显的对抗斑块来攻击现有的VSLAM系统。我们广泛评估了对行业级车辆,机器人平台和四个著名的开源数据集的AOR攻击的有效性。评估结果表明,AOR攻击可以有效地攻击现有的VSLAM系统并引入极高的定位错误(高达713%)。为了减轻此攻击,我们还设计了一个重要的防御模块,以同时检测异常的环境纹理分布并支持可靠的VS-LAM。我们的防御模块轻巧,有可能应用于现有的VSLAM系统。
摘要:尿路上皮癌 (UC) 是全球男性中第四大常见癌症。虽然非肌层浸润性疾病患者的预后良好,但 25% 的 UC 患者表现为局部晚期疾病,5 年生存率为 10-15%,总体预后较差。肌层浸润性膀胱癌 (MIBC) 接受根治性膀胱切除术或三联疗法治疗时,5 年生存率约为 50%;IV 期疾病的 5 年生存率为 10-15%。目前 MIBC 的治疗方式包括新辅助化疗、手术和/或放化疗,但复发或难治性疾病患者的预后较差。然而,免疫肿瘤学在各种血液系统和实体恶性肿瘤中的快速成功为 UC 提供了具有巨大治疗潜力的新靶点。从历史上看,没有预测性生物标志物来指导 UC 的临床管理和治疗,生物标志物的开发是一种未得到满足的需求。然而,最近和正在进行的临床试验已经确定了几种有希望的肿瘤生物标志物,它们有可能作为 UC 的预测或预后工具。本综述全面总结了新兴的生物标志物和分子肿瘤靶点,包括程序性死亡配体 1 (PD-L1)、表皮生长因子受体 (EGFR)、人表皮生长因子受体 2 (HER2)、成纤维细胞生长因子受体 (FGFR)、DNA 损伤反应和修复 (DDR) 突变、聚(ADP-核糖)聚合酶 (PARP) 表达和循环肿瘤 DNA (ctDNA),以及它们在 UC 中的临床效用。我们还评估了 UC 精准肿瘤学的最新进展,同时说明了这些生物标志物在临床实践中的临床应用相关的限制因素和挑战。
我们提出了一个框架,用于分类人工通用识别(AGI)模型及其前体的可行性和行为。该框架引入了AGI的水平,一般性和自主性,提供了一种共同的语言来比较模型,评估风险并衡量沿AGI的进度。为了开发我们的框架,我们分析了AGI的定义,并提炼了六个原则,即AGI有用的本体论应该符合ISFY。考虑到这些原则,我们根据能力的深度(性能)和广度(一般性)提出了“ AGI级别”,并反映了当前系统如何融入该OGY。我们讨论了对未来基准测试的挑战性要求,这些基准量化了针对这些利益方面的AGI模型的行为和能力。最后,我们讨论了这些级别的AGI如何与部署注意事项(例如自主权和风险)相互作用,并强调了精心选择人类互动范式的重要性,以负责对高度强大的AI系统负责和安全地部署。
抗体药物偶联物 (ADC) 正在改变转移性尿路上皮癌 (mUC) 的治疗格局。这些药物将化疗的细胞毒作用与抗体靶向相结合,实现了强大而精确的效果。传统上,UC 的治疗选择有限,预后不良;仅有 5% 的 mUC 患者存活超过 5 年 [1] 。在开创性的 III 期 EV-302 试验之后,enfortumab vedotin (EV) 联合 pembrolizumab 已取代含铂化疗成为标准的一线疗法 [2,3] 。在铂类难治性环境中,美国食品药品监督管理局 (FDA) 已批准 EV 和 sacituzumab govitecan (SG) 单药治疗用于未经选择的患者。目前正在探索针对 HER2 的个性化治疗方法。
MNZ-PEAK群集合作伙伴关系是我担任APPG主席最激动人心的CCS项目之一。这是英国最先进的项目之一,提供了将英国最大的天然气场之一重新利用的机会,为一家较差的LD领先碳店,接受了一个数百年来一直是该行业的碳。超出了项目的重大经济利益,所提供的存储规模使MNZ-PEAK群集成为一个在国内和国际上具有重要意义的项目。
抽象背景不匹配修复缺乏(DMMR)和微卫星不稳定性高(MSI-H)出现在癌症的子集中,并已证明对免疫检查点抑制(ICI)具有敏感性;但是,尿路上皮癌(UC)缺乏前瞻性数据。方法和分析我们进行了系统的审查,以估计UC中DMMR和MSI-H的患病率,包括生存和临床结果。我们搜索了2022年10月26日在主要科学数据库中发表的研究。我们筛选了1745项研究,其中包括110。荟萃分析。结果,膀胱癌(BC)和上游UC(UTUC)中DMMR的汇总加权率为2.30%(95%CI 1.12%至4.65%)和8.95%(95%CI 6.81%至11.67%)。BC和UTUC中MSI-H的合并加权流行率分别为2.11%(95%CI 0.82%至5.31%)和8.36%(95%CI 5.50%至12.53%)。比较局部疾病与转移性疾病,BC中MSI-H的合并加权流行率为5.26%(95%CI 0.86%至26.12%)和0.86%(95%CI 0.59%至1.25%);在UTUC中,它们为18.04%(95%CI 13.36%至23.91%)和4.96%(95%CI 2.72%至8.86%)。累积地,用ICI处理的DMMR/MSI-H转移性UC的反应率为22/34(64.7%),而化疗为1/9(11.1%)。结论DMMR和MSI-H在UTUC中比在BC中更频繁地发生。在UC中,MSI-H在局部疾病中比转移性疾病更频繁地发生。在UC中,MSI-H在局部疾病中比转移性疾病更频繁地发生。这些生物标志物可以预测转移性UC中ICI的敏感性以及对基于顺铂的化学疗法的抗性。
摘要:膀胱癌(BC)是美国最常见的恶性肿瘤之一,每年有80,000例新病例和16,000例死亡。尿路上皮癌(UC)是最常见的组织学,占病例的90%。BC的管理均复杂。因此,美国泌尿外科协会(AUA)建议患者在治疗期间和治疗后接受密切监测。此监视以膀胱镜检查或成像测试的形式,这可能是侵入性且昂贵的测试。考虑到这一点,最近有很多努力寻求膀胱癌监测的补充。无细胞DNA(CFDNA)或从垂死细胞释放的DNA,循环肿瘤DNA(CTDNA)或从肿瘤细胞释放的突变DNA,可以分析以检测和表征肿瘤的分子特征。研究表明,在BC Care领域中使用CTDNA的结果有希望的结果。进行了一项PubMed文献综述,研究了在BC检测,预测和监测复发中讨论CFDNA和CTDNA的研究。使用的关键词包括膀胱癌,无细胞DNA,循环肿瘤DNA,尿路上皮癌和液体活检。研究表明,CTDNA可以作为早期和晚期晚期的预后指标,有助于大手术前的风险分层,有助于检测疾病进展和转移性复发,并可以评估可能对免疫疗法反应的患者。需要进一步的前瞻性,随机试验,以阐明BC护理进步方面的真正潜在ctDNA。ctDNA的好处不仅限于卑诗省,因为研究还表明了其作为上累uctut trup trains Neoadjuvant化学疗法的生物标志物的希望。但是,CTDNA存在一些局限性,需要改善CTDNA特异性检测方法和BC特异性突变,然后才能实现广泛利用。
对太阳能和风能系统的综述,整合太阳能,风能和生物质来源,展示了各个部门的各种原理,类型和应用。该领域的研究探讨了多个太阳能和风能来源的协同组合,以克服个人局限性并最大化能量输出。这些系统经常采用控制策略来优化能源产生,存储和分配,从而确保电源的可靠性和稳定性。文献重点介绍了混合系统,包括偏远地区的网格电气化,网格连接的发电以及用于工业和住宅用途的分散能源生产。此外,将混合可再生能源系统纳入微电网和智能能源网络的趋势正在增长,从而实现了更有效和可持续的能源管理。研究强调,在设计和实施混合可再生能源系统时,考虑特定地点条件,资源可用性和技术经济因素的重要性,铺平方法,以实现更具弹性和环保的能源未来。
这种动态的无线充电是电动汽车的游戏规则改变者,该技术可实现无线充电。随着电动汽车变得越来越流行,对有效和高效充电解决方案的需求变得更加明显。动态无线充电,在开车或旅途中也称为无线充电,有可能解决与电动汽车行业相关的一些最大问题。太阳能电池板将热能转换为电能。主电路从电网和太阳能电池板接收电源,动态无线电源传输与电动汽车的概念可以在道路上移动或在特殊区域存储时动态充电,这两者都配备了充电站。这种方法消除了手动将汽车连接到充电器的必要性。它采用电磁和感应的通信原理,无线传输能量从道路传输到车辆的电池,而无需实现物理链接。这为研究动态无线充电提供了机会,该概念有可能加快电动汽车行业的接受并带来可持续和高效的运输的新时代。动态无线功率传输(DWPT)研究最广泛的方法。,由于电动汽车的动态无线电气充电系统,无需等到电池充满电。在本文中,我们正在添加收集收集系统,这意味着,当汽车进入电气路线时,将出现一些嵌入式系统以及传输线圈。收集系统接收到汽车中的电池数据。根据电池的数据,它计算出电气化道路上的汽车行驶期间的充电费用,并根据每单位的价格转移了多少电源来收集收取的费用。
