本文件是美国政府的作品,属于公共领域。分发和使用本文件的全部或部分内容(不对材料内容进行实质性更改)时,必须注明来源:DOE(例如“来源:DOE”;“材料由 DOE 开发”),并附上免责声明,表明您对材料的使用并不意味着 DOE 或美国政府的认可(例如“对特定商业产品、制造商、公司或商标的引用并不构成美国政府或能源部的认可或推荐。”)DOE 可能已从图片库服务或其他版权所有者处获得使用许可,这些版权所有者可能会禁止重新发布、重新传输、复制或以其他方式使用这些图片。如对特定图片的再利用有任何疑问,请联系 DOE。
与此同时,电动汽车也为改善电网性能提供了宝贵的机会。车辆到电网 (V2G) 等技术使电动汽车能够充当分布式能源资源,提供负载平衡、需求响应和峰值负荷管理等电网服务。通过使电动汽车能够将电力返回电网,V2G 可以缓解高需求时期的压力,并增强太阳能和风能等可再生能源的整合 [3]。本文探讨了电动汽车的采用与电网基础设施之间不断发展的关系,特别强调了智能电网技术和创新能源管理战略的作用。随着我们向低碳能源未来过渡,这些解决方案对于优化电网弹性、效率和可持续性至关重要 [4]。
向脱碳能源系统过渡是 21 世纪的决定性挑战之一。为避免灾难性的气候变化,全球温室气体排放必须在 2050 年之前达到净零排放(Masson-Delmotte 等人,2019 年)。实现净零排放的道路始于脱碳发电和电气化交通、供暖等能源终端使用。然而,风能和太阳能光伏等可变可再生能源以及电动汽车 (EV) 等新电力负荷的兴起对电力系统提出了挑战。风能和太阳能产出会随分钟、小时和天而变化,而电动汽车等新负荷可能会大幅增加峰值电力需求(Bunsen 等人,2018 年)。这些变化将要求电力系统变得更加灵活,例如通过转移电力需求以匹配可再生能源的可用性并增加能源存储。电动汽车可以充当“车轮上的电池”来提供关键的灵活性——在可再生能源产出高时充电,在可再生能源产出低时放电。然而,电动汽车能够发挥这一作用的程度,关键取决于它们的充电时间以及电动汽车车主将备用电池容量的电能卖给电网的意愿。个体电动汽车车主响应价格激励做出的充电决策将最终决定电动汽车能够提供的系统级灵活性。因此,了解电动汽车车主是否会以及在多大程度上改变他们的充电方式以响应价格激励,是将电动汽车整合到高渗透可再生能源系统的关键(Szinai 等人,2020 年)。在本文中,我们提出了新证据,说明电动汽车车主如何响应价格激励,将充电时间转移到支持太阳能发电高渗透率的电力网络的时间。我们的研究利用高分辨率、逐分钟的远程信息处理数据跟踪所有驾驶、充电和车辆位置,以提供电动汽车车主行为的细致而全面的视图。这个丰富的数据集让我们能够检查充电、驾驶和电池管理的时间和地点。对于为这项研究招募的 390 名澳大利亚特斯拉车主样本,我们首先比较了有屋顶太阳能和没有屋顶太阳能的车主的充电时间和地点。在我们的设置中,当屋顶太阳能车主的太阳能电池板发电时,他们面临着强大的经济激励,希望在家中充电。我们发现充电行为存在很大差异。对于屋顶太阳能车主来说,中午的充电份额高出 76%,高峰需求时段的充电份额低 33%,而在家中充电的份额高出 14%。然后,我们随机分配一半的车主样本,让他们获得激励,以避免在电网最容易承受压力的高峰需求时段充电。此外,
火灾:如果 GM Energy PowerBank 安装位置发生火灾,请立即撤离现场并联系当地应急部门。如果电池附近发生火灾或 GM Energy PowerBank 着火,请勿尝试灭火。立即撤离现场所有人员。如果这样做是安全的,用户应断开 GM Energy PowerBank 断路器以切断充电电源。洪水:如果 GM Energy PowerBank、GM Energy 逆变器或接线的任何部分被淹没,请远离水面并不要触摸任何东西。不要再次使用被淹没的 GM Energy PowerBank。如果这样做是安全的,用户应断开 GM Energy PowerBank 断路器以切断充电电源。如果您认为存在任何风险,请联系您的服务工程师寻求帮助或联系应急部门。
摘要 - 这项研究解决了准确预测电动汽车能源消耗(EV)的挑战,这对于减少范围焦虑和进步的充电和能量优化至关重要。尽管当前预测方法(包括经验,基于物理和数据驱动的模型)的局限性,但本文介绍了一种新颖的基于机器学习的预测框架。它整合了物理知识的功能,并将离线全球模型与特定于车辆的在线改编相结合,以提高预测准确性并评估不确定性。我们的框架经过来自现实世界中电动汽车车队的数据的广泛测试。虽然领先的全球模型,即分位数回归神经网络(QRNN)的平均误差为6.30%,但在线适应进一步降低至5.04%,两者都超过了现有模型的性能。此外,对于95%的预测间隔,在线改编的QRNN将覆盖范围提高到91.27%,并将预测间隔的平均宽度减少到0.51。这些结果证明了利用基于物理的特征和基于车辆的在线适应来预测EV能源消耗的有效性和效率。
印度摘要:人们对电动汽车 (EV) 日益增长的兴趣可以归因于其能源效率和环保性。然而,电动汽车有限的行驶里程仍然是潜在买家的主要担忧。本研究探讨了电动汽车能量补充的各种方法,包括无线充电、太阳能和再生制动。本综述评估了几种延长电动汽车行驶里程的策略的优势、挑战和有效性。提供有关增强电动汽车可持续性和可行性的见解是主要目标,这将有助于创建更环保、更节能的交通系统。关键词:太阳能电池板、Arduino 软件、LCD 显示器、蜂鸣器、继电器、传感器。1. 简介随着化石燃料价格的持续波动,可再生能源变得越来越重要。太阳能是最受欢迎的可再生能源之一。它是一种丰富的能源,既可以直接作为太阳能隔离,也可以间接作为风能。太阳以电磁辐射的形式释放能量,其潜在能量为 1780 亿兆瓦,约为全球需求的 20,000 倍。一部分太阳能有助于水的蒸发,从而形成降雨和河流。此外,部分太阳能还用于光合作用,这对地球上的生命的维持至关重要。已经开展了许多研究项目来提高太阳能电池板的效率。使用太阳能电池板跟踪系统是一种实用的策略。本研究文章重点介绍基于微控制器的太阳跟踪系统。为了确保太阳能电池板与太阳光束保持垂直,太阳跟踪对于提高能源产量至关重要。多年来,人们一直在不断创建太阳能电池板的跟踪系统。太阳能电池板可以通过全天跟踪太阳的运动来定位自己以吸收最佳量的太阳能,从而最大限度地提高电力输出。目前,太阳能发电系统使用的是固定的太阳能电池板,其发电效率较低。本文的目的是将太阳跟踪引入现有的固定太阳能电池板,从而保持恒定的最大功率输出。因此,通过使用这种跟踪系统,我们可以提高太阳能发电的转换效率。为此,我们使用 PIC 微控制器进行太阳跟踪。
• 如果您的兼容 GM EV 已插入电源并在兼容 GM EV 的移动应用程序(myChevrolet、myBuick、myGMC 或 myCadillac)中设置为“自动备用电源”——即使它未充满电——GM Energy V2H 系统也会在识别到断电后立即开始向您的家中放电。一旦您在车辆屏幕或移动应用程序中确定了您的家庭充电位置,就无需采取进一步行动(有关更多信息,请参阅使用您的 GM EV 的移动应用程序部分)
FCN工作文件号17/2022造型于2022年5月修订的电动汽车能源消耗的波动性和灵活性:Jarusch Muessel Potsdam气候研究所影响研究Telegraphenberg A 31 P.O.box 60 12 03(155)14412 Potsdam Jarusch.muessel@pik-potsdam.de Oliver Ruhnau Hertie SchoolFriedrichstraße180 10117柏林电子邮件:ruhnau@ruhnau@hertie-school.org Aachen UniversityMathieustraße10 52074 Aachen,德国电子邮件:rmadlener@eonerc.rwth-aachen.de
图 2a:极耳冷却测试设置(左)和热成像结果(右)。除了热成像测试外,伦敦帝国理工学院还研究了极耳冷却性能,其研究得出结论,极耳冷却可延长软包电池的使用寿命。虽然这项研究还提出,与不进行任何电池修改的底部冷却相比,极耳冷却并不是最佳的冷却解决方案,但已经进行了模拟并证明,与表面冷却相比,改变极耳部分和集电器厚度可以实现类似或更好的冷却性能。塞拉尼斯公司先进移动卓越中心的工程师与法国 CEA 研究所的热管理模拟部门合作,进行了一项全面的数值研究,旨在实现极耳冷却电池和底部冷却电池的类似冷却行为。底部冷却是当今软包电池的参考,在最新的车辆中可以看到,这些车辆实现了市场上最快的充电速度,例如保时捷 Taycan 或现代 E-GMP 汽车。图 3a 中的图表表示底部冷却电池在 2C 恒定速率下充满电时的参考情况的温升。电池为袋装形式,长 350 毫米,厚 10 毫米,高 100 毫米。边界条件是充电开始时温度为 25°C,电池除极耳所在位置外所有表面均无对流,热管理系统确保温度恒定