共轨 ASAT 将拦截器送入轨道,然后操纵拦截器改变轨道,使其接近目标。共轨 ASAT 可以在进入轨道后立即操纵接近目标,也可以在长时间处于休眠状态后操纵接近目标。它们可以通过超高速直接碰撞、释放与目标相撞的碎片云、使用机械臂损坏或移除目标卫星的部件,或者在近距离使用电子战或定向能武器来试图损坏或摧毁目标。无论使用哪种技术,共轨 ASAT 都需要机载制导、导航和控制系统来识别和跟踪目标空间物体并微调其轨迹以进行适当的拦截。冷战期间,苏联曾多次努力开发、测试和部署共轨 ASAT 能力。人们考虑了几种不同的共轨道武器部署概念,包括激光器、导弹平台、载人和无人炮兵平台、机器人操纵器、粒子束、霰弹枪式弹丸炮和核太空地雷,但大多数都在绘图板上夭折了。¹
摘要背景:癌症是人体任何部位不受控制的细胞分裂的疾病。乳腺癌(BC)是女性人口中新兴的健康问题,占全球死亡的13%。研究的目的是评估班加罗尔三级护理医院的卑诗省患者的药物处方模式。材料和方法:在三级护理医院进行了6个月的前瞻性观察研究。在符合纳入标准的卑诗省患者中,在日托单位和住院治疗部门内进行了采样。设计和用于收集信息的标准数据收集表。结果:总共纳入了满足纳入标准的52名患者。大多数患者年龄超过50岁,并且在绝经后。大多数患者被诊断为BC的IV期,患有三阴性和HER2+肿瘤。大多数患者接受化疗包括辅助和双重药物治疗。最常见的抗癌药物是紫杉醇(20.18%),环磷酰胺(18.34%)和卡泊汀(14.68%)。59.61%的药物是从国家基本医学清单(NELM)的2022年开处方的,而WHO基本药物清单的63.46%2023。结论:BC是一种普遍的癌症类型,需要长期治疗和监测来评估和完善治疗方案。本研究评估了卑诗省患者中化学治疗剂的处方模式,并促进了药物的合理使用并减少患者的痛苦。
2022 年 4 月,英国能源安全战略 2 重申了政府的雄心,即在四个工业集群中实施 CCUS,到 2030 年每年捕获和储存 20-30 兆吨二氧化碳 (MtCO ₂),其中工业排放量到 2030 年每年为 6 MtCO ₂,到 2035 年增加到每年 9 MtCO ₂,并且还有可能更多:我们的建模假设表明,“最低社会成本”途径将需要到 2035 年每年捕获和储存约 10 MtCO ₂。2023 年 9 月,政府更新了 CCUS 市场,包括东海岸集群 (ECC) 和 HyNet 的 Track-1 扩展拟议计划。 2023 年 12 月的 CCUS 出版物包提供了我们实现这些目标的最新情况,包括为希望在 2030 年前连接到 HyNet 集群的新 CCUS 项目启动 CCUS Track-1 扩展 HyNet 流程。在 2023 年 12 月运输和储存 (T&S) 第 3 条款负责人与 ECC T&S 公司达成协议后,政府现在将考虑启动扩展流程的最佳时机,首先要评估储存准备情况。
2021-2025 • 来自寿命延长、重新安置/“最后一英里交付”、近距离检查和主动清除碎片等服务的收入。 2026-2030 • 除现有任务外,还有新的服务任务,如救援/维修和加油或安装推进模块 • 通过空间组装实现的新任务,可能是天线反射器组装(可以堆叠)、太阳能电池板和吊杆,它们也可以在立方体卫星或小型卫星任务中飞行。 • 月球门户的自动组装、检查和维修可以应用于载人航天。 2031-2036 • 空间组装任务(如 P/L 升级和大型天线反射器)以及载人空间站的自动维护产生大部分价值。 • 2036 年以后,可能出现首个针对太空和地球的空间增材制造任务。 • 诸如 GEO“枢纽”、超大直径反射器(+18m)、月球 ISRU 和空间发电等新应用可能成为非常大的市场。
该报告还提供了 OSAM 领域当前政策、法律和能力发展的最新概述,研究了欧空局和欧盟成员国以及世界其他地区选定的航天国家的当前参与者、项目和公开表达的优先事项。该报告概述了欧洲大学针对 OSAM 的博士研究,更详细地了解了该领域的兴趣和项目。在监管发展方面,它侧重于对围绕 OSAM 的国际空间法的解释。最后,该报告提出了释放欧洲 OSAM 潜力的建议。该研究提供了 OSAM 计划和任务的最新快照,这些计划和任务正在宣布、开发和执行,以及它们的相关趋势。虽然 OSAM 技术自冷战开始以来就已得到开发,但该报告的目的并不在于详细介绍 OSAM 或国家能力的历史,而是侧重于当前的政策、技术和市场发展。还值得注意的是,当前趋势受许多假设的影响,这些假设仍有待证实。 OSAM 活动对未来充满希望,吸引了许多新参与者,但观察未来几年的发展对于判断其真正重要性至关重要。因此,在评估欧洲 OSAM 生态系统的历史和现状以及 2020 年研究中提出的挑战的同时,本报告采用了更具前瞻性的视角。
Astroscale与ESA达成了战略协议,因为双方双方通过交换与任务操作有关的数据和专业知识,环境监测碎片和活跃的碎屑清除,在追求ELSA-D和未来任务的合作方面具有共同的战略兴趣。
过去十年,在轨小型卫星的数量迅速增加,预计未来几年该领域的增长将进一步加速。2011 年,只有不到 100 颗重量不足 600 公斤 (kg) 的卫星被发射到地球轨道。2020 年,发射了 1,200 多颗此类卫星,其中绝大多数归商业实体所有。1 已颁发许可证允许发射数千颗卫星。这些趋势对全球军事用户具有重要意义。小型卫星提供了独特的能力和经济机会,但也带来了新的威胁。本简报概述了小型卫星技术的优势、弱点和战略影响,讨论了当前政府和商业部门在这一领域的努力,并讨论了未来的潜在发展。
MakerSat-1 是一颗 1U 立方体卫星,是西北拿撒勒大学 (NNU) 和 Made In Space (MIS) 的一项概念验证任务。它展示了国际空间站 (ISS) 上立方体卫星的微重力增材制造。它是第一颗专门设计为 3D 打印且在微重力下轻松组装的卫星。其结构框架于 2017 年 8 月在 ISS AMF 打印机上 3D 打印而成。2019 年末,MakerSat-1 被装载到 SEOPS Hypergiant Slingshot 部署器中,然后于 2019 年 12 月 5 日搭乘 SpaceX CRS-19 Dragon 发射到国际空间站。2020 年 1 月 31 日,该部署器安装在 Cygnus NG-12 航天器的舱门上,从国际空间站出发,升至 300 英里高的轨道。 2020 年 2 月 1 日,MakerSat-1 和其他立方体卫星从 Slingshot 发射升空并进入轨道。在部署后的四个月内,MakerSat-1 一直在研究 3D 打印聚合物样品在轨道空间环境中的耐久性。本文报告了这些科学数据的结果。
主席、不限成员名额工作组成员、民间社会参与者和秘书处,大家早上好!感谢你们邀请我参加这些讨论,并让我有机会分享我对太空安全问题的看法。太空竞争并不是什么新鲜事。自 1957 年世界上第一颗人造卫星 Sputnik-1 发射以来,竞争就一直存在。但几十年来,这种竞争发生了变化,而且愈演愈烈。太空军事化是我们在过去几十年中讨论过的问题——事实上,世界上大多数军队都将太空用于他们所谓的被动军事行动,例如 ISR(情报、监视和侦察)。但今天,这并不是真正的担忧。许多缔约国确实在将外层空间武器化,这使得外层空间变得极其脆弱。将太空纳入军事行动会产生严重后果。这是一条危险的道路,因为如果一个国家决定走上这样的武器化道路来保护自己,它就会迫使其他国家也这么做。最终结果对每个人都是负面的,原因有几个。第一,太空本质上是有限的;可用的轨道本质上是有限的。如果大量国家决定走这条路,就会污染太空,超出可用范围。已经拥挤不堪的太空将变得更加拥挤,太空物体和太空垃圾在过去十年中呈指数级增长。正如国防情报局最近的报告所述,太空发生碰撞的可能性大大增加。报告称,“由于太空发射次数增加(尤其是搭载多个有效载荷的发射),以及碰撞、电池爆炸和进一步的反卫星试验事件造成的持续碎片化,近地轨道 (LEO) 上大型废弃物体发生碰撞的可能性正在增加,而且几乎肯定会持续到至少 2030 年。” 第二,这些行动将对太空的长期可持续性产生负面影响,甚至可能在中期内无法进入太空。采取此类行动并不能保证安全、可靠和持续进入太空。尽管由于太空拥挤的性质可能会发生许多卫星中断,但日益加剧的地缘政治竞争(尤其是在印度太平洋地区和全球范围内)增加了各国故意发动攻击的可能性,以此来否认通过太空获得的优势(尤其是在冲突期间)。在地缘政治竞争的推动下,我们正在走向新生的外层空间军备竞赛。这些可能表现为使用网络和电子战等反太空能力进行的一系列攻击,但在未来,使用反卫星系统或共轨系统的可能性似乎越来越大,所有这些都使安全、可靠和不间断地进入外层太空变得更加困难。
虽然光学原型设计为使用来自各种传感器的图像,但 FAI 图像特别适合展示光学原型的性能。FAI 相机的视场和检测能力与星跟踪器类似,其图像包含许多感兴趣的 RSO,尤其是在难以通过地面系统进入的极地地区。尽管孔径较小,但星跟踪器的视场 (FOV) 较大,约为 20° 或更大,因此非常适合背景天空物体监测 [2]。此外,它们的粗像素分辨率可减少由于低地球轨道 (LEO) 中相对角速率较高而导致的条纹信号损失。然而,这些商用现货 (COTS) 传感器的真正潜力在于它们的普遍性——目前数百艘航天器使用星跟踪器进行姿态测定 [3]。如果兼作 RSO 监测,那么这些“后院轨道天文台”在低地球轨道上提供的总覆盖范围将是巨大的。