DORA任务的总体目标是测试宽场激光接收器技术。此任务将表征轨道上的接收器技术性能。作为次要任务Dora将举办紧凑的21cm宇宙学接收器,这是未来的高带宽互连的应用。射电天文学有效载荷目标是使新颖的RF组件太空质量,并绘制50至150MHz频段中的干扰。该卫星将作为ISS ISPARD Mission SPX-30上的二级有效载荷发射,来自Cape Canaveral,不早于2024年3月4日。将插入425公里的座椅上的轨道和51.6°倾斜度的412公里的Perigee。部署后45分钟开始传输,并在2年任务后停止。大气摩擦将减慢卫星并降低轨道的高度,直到发射后大约7个月进行逐渐消除。有关详细信息,请参见轨道碎片评估报告。航天器是一个单元,其尺寸为3个堆叠10 cm x 10 cm x 10 cm Cubesat模块(总体尺寸为10 cm x 10 cm x 30 cm)总质量约为2.2千克。
ADR – 主动碎片清除 ASAT – 反卫星武器 COMSATCOM – 商业卫星通信 COTS – 商用现货 DARPA – 国防高级研究计划局 DoD – 国防部 DoS – 国务院 DSS – 国防太空战略 FAA – 联邦航空管理局 FCC – 联邦通信委员会 GEO – 地球同步轨道 GPS – 全球定位系统 GSD – 地面采样距离 HEO – 高椭圆轨道 IADC – 机构间空间碎片协调委员会 ICBM – 洲际弹道导弹 IoT – 物联网 ISR – 情报、监视和侦察 ITU – 国际电信联盟 LEO – 低地球轨道 MEO – 中地球轨道 NASA – 美国国家航空航天局 NATO – 北大西洋公约组织 NDSA – 国防空间架构 NOAA – 国家海洋和大气管理局 NPRM – 拟议规则制定通知 NSSS – 国家安全太空战略 ODMSP – 轨道碎片缓解标准实践 OST – 外层空间条约 PNT – 定位、导航和授时 RPO – 会合和近距操作 SATCOM – 卫星通信 SBIR – 天基红外监视 SDA – 空间发展局 SSA – 空间态势感知 SSN – 空间监视网络 STM – 空间交通管理 UNCOPUOS – 联合国和平利用外层空间委员会 UTC – 世界协调时 WMD – 大规模杀伤性武器
摘要 随着北极等受气候变化影响最严重的空间环境恶化加剧,以及人为环境问题延伸到地球轨道,国际法面临着一些前所未有的挑战。围绕这一问题的大部分法律对话都是抽象的,因此没有关于立法方法和实际应用的确切建议。在本文中,我认为当前与北极和外层空间相关的治理先于对这些空间的理解。批判后人类主义和其他方法指出,人体与环境之间一直存在着严格的界限。国际法的形式主义教义推论加剧了这些界限。我建议用一个广义的术语来制定立法:宇宙法。宇宙法提案挑战了人造和非人类“法律”——科学法律和社会法律——之间的区别,并质疑两者的基础决定因素。因此,我在本文中提出的框架要求对立法的准确性进行新的近似,这可以通过更大的跨学科性和对本体论多元化的接受来实现。本文分为两个较大的部分。第一部分重点关注两个环境问题:A)北极的温室气体(GHG)排放和B)轨道碎片。第二部分主张在未知的背景下建立不同的法律本体论和人类的自我理解。它提出了“宇宙法性”,试图近似地包容和代表“一切被认为是非人类的东西”。
目的 2018 年 6 月 18 日,白宫发布了空间政策指令 3 (SPD-3),即国家空间交通管理政策。SPD-3 的首要目标是推进空间态势感知 (SSA) 1 和空间交通管理 (STM) 科学技术。SPD-3 指出:“美国应继续参与并推动科技 (S&T) 研究与开发,以支持 SSA 和 STM 的实际应用。这些活动包括……推进关键 SSA 输入的科技发展,例如提高 SSA 能力所必需的观测数据、算法和模型,以及开发新硬件和软件来支持数据处理和观测。” 为了响应 SPD-3,国家空间委员会的用户咨询小组 (UAG) 技术和创新小组委员会一直在咨询多位政府和行业专家,研究有关 SSA 数据的技术问题。美国政府 (USG) 的许多利益相关者都与 SSA 数据有关,包括国防部 (DoD)、情报界 (IC)、美国国家航空航天局 (NASA)、商务部 (DOC)、交通部和国务院。持续观察和跟踪太空物体位置(简称 SSA)的能力对于轨道碎片跟踪和/或清除、出于国内监管目的监控太空安全操作以及太空领域的国际安全和透明度等关键能力而言绝对至关重要。需要采取全政府方法来应对这些挑战。本文件总结了 UAG 的两项关键建议和几项观察结果。
外层空间对于满足公民的日常生活需求和 21 世纪世界经济的平稳运转至关重要 (ACSC, 20023; 太空基金会, 2023),同时它对军事行动也越来越重要,可以实现和扩大力量倍增器选项的数量,并在和平或战争时期开辟新的创新可能性。因此,一些军事大国正在积极寻求反太空能力,以干扰、破坏或阻止潜在对手的太空能力 (Brown, 2006; ACSC; AWC, 2023)。自 2018 年以来,安全世界基金会 (SWF) 和战略与国际研究中心 (CSIS) 的非机密开源报告每年都会记录越来越多的国家正在开发、测试和实施的反太空能力。目前,反太空能力大致可分为两类:动能和非动能。动能反卫星 (ASAT) 武器旨在通过碰撞或爆炸摧毁目标太空物体。非动能反卫星武器包括定向能武器、射频干扰和网络攻击。这两种不同的武器对目标卫星和太空环境的影响各不相同。动能反卫星武器旨在摧毁卫星,产生大量轨道碎片,并产生永久和不可逆转的影响。非动能反卫星武器可用于暂时或永久破坏或禁用卫星,其效果有时可以逆转。动能反卫星武器可进一步分为两个子类别;它们可以从地球发射时直接上升 (DA) 直接打击太空中的目标,也可以共轨,这意味着它们仅在进入轨道一段时间后才进行打击 (Weeden;Samson,2024 年;Swope 等人,2024 年)。
极端太空环境,例如太空真空、辐射、极端热环境和热循环、锯齿状月球尘埃、微重力、微流星体和轨道碎片 (MMOD)、推力羽流喷射物及其协同不利影响,都是对外行星和卫星进行安全和可持续太空探索的艰巨挑战。长时间的太空辐射暴露会使材料和结构变脆,而磨蚀性的锯齿状尘埃颗粒会严重磨损和侵蚀运动部件,导致过早失效。为了应对甚至缓解这种潜在的故障,需要坚固而特殊的材料,以使包括 Artemis 计划在内的 NASA 任务可持续进行,并将服务和维修需求降至最低。本研究报告称,含硼夹杂物 B 4 C 可以显著提高铝合金 (Al6061) 的耐磨性和辐射屏蔽/抗性,从而延长其在极端太空环境中的使用寿命。随着 B 4 C 夹杂物的增加,拉伸强度在室温和高温 (200˚C) 下都增加高达 20 vol%,而热导率则随着 B 4 C 浓度的增加而逐渐降低。与纯 Al6061 相比,当 Al6061 中添加 50vol% B 4 C 时,中子屏蔽效能提高了 110 倍以上。还利用在线太空辐射评估工具 (OLTARIS) 计算研究了银河宇宙射线 (GCR) 和太阳粒子事件 (SPE) 下的屏蔽效能。通过添加 B 4 C,可有效抑制通过 Al6061 基质的二次辐射引起的不利影响,从而提高对 GCR 和 SPE 的屏蔽效能。B 4 C 中硼的存在是增强对中子、GCR 和 SPE 环境辐射屏蔽能力的主要原因。
NASA设施和基础设施(包括办公室,实验室,发射综合大楼,测试台和风隧道)是探索月球和火星,促进商业空间行业,进行航空航天研究以及研究地球和空间科学的必要组成部分。NASA管理了400亿美元的设施资产,库存了5,000多个建筑物和结构;但是,超过75%的基础设施超出了其设计寿命,截至2020年,该机构面临的延期维护积压为26.6亿美元。 为了应对这些挑战并减轻当前和将来的任务的风险,NASA的设施建设(COF)计划着重于通过合并成较少,更高效,更可持续的设施并修复失败的基础设施来使NASA的基础设施现代化现代化,以降低整体维护成本。NASA管理了400亿美元的设施资产,库存了5,000多个建筑物和结构;但是,超过75%的基础设施超出了其设计寿命,截至2020年,该机构面临的延期维护积压为26.6亿美元。为了应对这些挑战并减轻当前和将来的任务的风险,NASA的设施建设(COF)计划着重于通过合并成较少,更高效,更可持续的设施并修复失败的基础设施来使NASA的基础设施现代化现代化,以降低整体维护成本。
观测近地环境中的尘埃和碎片是一个具有巨大商业和科学意义的领域,对于最大限度地延长卫星的运行和商业生命周期以及降低日益增多的低地球轨道 (LEO) 宇航员的风险至关重要。为此,监测和评估粒子通量对于航天工业和依赖轨道基础设施数据产品/服务的更广泛的社会经济利益至关重要。我们设计了一种被动式太空尘埃探测器来调查低地球轨道的尘埃环境——轨道尘埃撞击实验 (ODIE)。ODIE 设计用于在低地球轨道部署约 1 年,然后返回地球分析尘埃颗粒产生的撞击特征。该设计强调能够区分与人类太空活动有关的轨道碎片 (OD) 和自然产生的毫米到亚毫米级微流星体 (MM) 群。 ODIE 由多个 Kapton 箔组成,这些箔显示出巨大潜力,可以有效保存撞击粒子的尺寸和化学细节,残留物化学可用于解释来源(OD 与 MM)。LEO 是一个恶劣的环境——原子氧的强烈腐蚀作用会损坏 Kapton 箔——需要使用保护涂层。Kapton 的常见涂层(例如 Al、SiO 2 等)对于后续分析和解释 OD 与 MM 的来源存在问题,因为它们是 MM 或 OD 的常见元素成分,或者 X 射线发射峰与用于区分 MM 与 OD 的元素的峰重叠。因此,我们建议使用钯涂层作为此应用的替代品。在这里,我们报告了钯作为 Kapton 基被动式粉尘探测器的保护涂层在暴露于原子氧和撞击时的性能。当受到撞击时,我们观察到较厚的涂层会受到影响
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
• 投入 74.78 亿美元(比 2022 财年增加 6.87 亿美元)推进阿尔特弥斯任务并让美国宇航员最早在 2025 年重返月球,从而实现从月球到火星的探索,并加强美国在载人航天领域的领导地位。 • 投入 24 亿美元用于地球科学和观测,向科学家和决策者免费提供详细的气候数据,并投入超过 5 亿美元用于减少航空对气候的影响,以应对全球气候危机。这包括为温室气体监测和信息系统的原型能力提供资金,该系统是地球信息中心的一部分,可满足联邦、州和地方政府以及其他用户的需求,并与其他机构和合作伙伴合作实施。 • 通过国际空间站 (ISS) 的运行,支持人类继续在低地球轨道 (LEO) 存在到 2030 年,并投入 2.24 亿美元与美国工业界合作建设商业空间站,在这些新空间站于 2020 年代末投入使用时启动从 ISS 的过渡。 • 推进月球和火星的机器人探索,包括 4.86 亿美元用于月球科学任务和 8.22 亿美元用于火星样品返回。 • 推动太空技术的研究和开发,提高任务能力并发展商业太空产业,增加 3.38 亿美元,包括 2.7 亿美元用于行业合作、4500 万美元用于太空核能和推进,以及 1500 万美元用于早期轨道碎片研究和技术开发。 • 扩大和多样化学生对科学、技术、工程和数学 (STEM) 的参与,为 STEM 参与办公室提供 1.5 亿美元,以激励和培养下一代科学家、工程师和探险家。深空探索系统 - 74.78 亿美元(比 2022 财年总统要求增加 10.8%,比 2022 财年颁布增加 10.1%)