是如此温度引起的气候临界点变得显而易见,我们目前的理解水平为我们提供了如何积极干预以在避免或延迟该转化点所需的时间尺度上为相关区域降温的选择。诸如平流层气溶胶注射[5],海洋云亮[6]等方法,增加了地球表面的反射率(例如通过重新生长的冰盖),[7]并构建基于空间的反射器,以使地球从一定比例的阳光下遮挡[8] [8],作为潜在的方法,可以在全球或区域基础上冷却地球。然而,对所有这些方法都需要进行大量研究:甚至关于它们是否可以工作,其直接影响和副作用可能是什么,以及是否可以安全地使用它们的直接效果和副作用。关于这种方法的风险和影响的知情辩论需要解决这些不确定性。
●通过联合创新在观察和建模中建立预警系统。尚不清楚鉴于需要检测出实质背景变化的微妙趋势,甚至可能是可能的预警系统。我们的目标是通过这种协调的努力来确定是否可以。●减少在格陵兰冰盖(GRIS)和极性GYRE(SPG)的示例系统中发生小费的预测的不确定性,越过这些临界点的后果将是什么,以及在时间表上的影响。减少了临时标准和预期影响的不确定性(1),将赋予围绕转化点的适应或干预措施做出决策,同时增加对净零净减轻活动的紧迫性。●解锁气候科学中低尺寸/重量/功率/成本(SWAP-C)工具和人工智能(AI)的价值。
空缺信息从2025年9月开始在气候转化点预警中获得的价值和不确定性的3.5年博士学位,以在UCL科学,技术,工程和公共政策部(Steapp)的Erica Thompson博士的监督下工作。请注意,资助者仅支付津贴和房屋费用 - 国际学生将需要获得额外的资金,或者涵盖家庭和国际费用之间的差额。该项目将为异常强大的国际学生提供额外资金的申请。学生身份描述:您是否对长期基于证据的环境决策感兴趣,并对设计良好的科学来为有效的决策提供了兴奋?该项目的目的是检查价值观和不确定性在气候转化点的预警中的作用,这是一项大型新项目的一部分,共同使用气候模型和新观察,以创建用于气候临界点的预警系统。学生将对该计划进行横切观点,访谈模型开发人员以及计划经理和政治利益相关者,以了解早期警告系统的开发,从计划及其政治背景的整体目标到进程的详细选择,如何解释多种价值和不确定性。的目的是将建议回馈整个程序的方法论选择,因此有可能产生很高的影响并塑造飞行员预警系统的结果和运行。对于具有气候科学或气候建模背景的学生而言,这是一个绝佳的机会,并且对气候行动的哲学和政治具有广泛的兴趣。以及在大型计划中扮演关键的跨裁判角色,该学生将有机会在一个浓厚兴趣的领域发展跨学科的研究技能,并有望在项目会议和出版物上介绍他们的工作。在您的工作过程中,您将与其他项目进行广泛的联系,因此能够在这个新兴的研究领域发展出强大的知名度。您将与埃里卡·汤普森(Erica Thompson)博士合作,他的作品结合了关于使用模型在各种情况下支持决策制定的数学和社会观点,并且在科学咨询政治(在Steapp)和物理和数学科学(跨UCL)中都有进一步的学习机会(UCL),
基于先前工作中开发的热模型,并在参考文献中呈现。[4],已经确定,由于预热,可以将奥氏体阶段保留在激光处理过程中的整个存款步骤中。基于计算的材料点历史,在样品,LPF1和LPF2的制造中也实现了相同的结果。因此,在最后冷却阶段关闭激光器后,马氏体转化才发生。这样的转化产生了扩张菌株,可以促进沉积物内“拉伸”残留应力。但同时,冷却阶段本身会导致样品内收缩。现在考虑参考的工作。[5],取决于关键马氏体转化点(MS和MF)的位置,可能会出现“热”残留应力的暂时放松,这是由于所谓的超塑性效应在Martensite Transformation的时刻出现。在LFP2样品中获得的较高热量积累(见图7C)以及同一样品中较高的同质性水平可以被认为是该样品中获得的更好的超塑性效应的原因,从而避免了随后的冷裂裂纹现象,从而避免了更好的压力缓解。这些条件在CP和LFP1的两个样本中都无法存在,因此导致它们随后的冷裂。
气候系统的临界点可以定义为关键阈值,其跨越会导致自我加强和气候系统功能的不可逆转变化。临界点是令人担忧的,因为一旦越过,气候变化的影响就会加速并变得无法控制,从而使以前的气候状态变得非常困难或不可能。目前,我们知道随着气候变化的进展,可以触发的25个潜在的气候系统转化点,这将对自然和社会产生严重的全球或区域后果。这些转折点不再是“低可能性,高影响力”事件,而是随着气候变化的发展而成为“高概率,高影响力”事件2。最近对气候变化的面板(IPCC)(IPCC)第六次评估报告(AR6)3,尤其是对全球气候系统的研究,以及最新的观察点2,以及对全球范围的研究,以及对全球范围的探测点,以及对全球范围的2号报告,以及对全球范围的2,以及conteription contips 2,以及最新的观察点2,以及对全球的范围2,以及对全球范围的2次介绍,并促进了临界点之间的最新论述。大西洋子午翻转循环(AMOC)的临界点。在针对未来威胁的新研讨会和事件中,与临界点相关的风险越来越多。
《巴黎协定》(2015年)是一项国际气候条约,旨在将全球平均温度的升高限制在高于工业前水平的2°C以下,并努力将其限制为1.5°C。地球的气候系统很复杂 - 即使是平均全球温度的较小升高也会导致巨大的变化,并且可能触发“临界点” - 相对较大,突然,有时是不可逆转的变化,例如冰盖瓦解和森林衰老。在2018年,政府间气候变化小组(IPCC)警告说,全球变暖不得超过1.5°C,以避免这些转化点及其灾难性影响。要实现这一目标,全球碳排放必须到2030年减半 - 到2050全球各国都设定了预期的国家确定的贡献(NDC),概述了国家为减少净零净排放而努力减少排放的努力。IMPHATS的东道国已经开发了NDC,并批准了《巴黎协定》。在NDC中,我们的东道国正在发展或开发脱碳途径,需要各自行业的支持。
摘要:肠道微生物及其代谢产物积极参与宿主免疫的发展和调节,这可能会影响疾病易感性。在此,我们回顾了肠道微生物群 - 免疫轴的最新研究进步。我们详细讨论了肠道微生物群是如何成为新生儿免疫发育的转化点,如新发现的典型,例如在子宫肠道代谢组和断奶反应中,例如母体印记,例如母体印记。我们描述了肠道菌群如何塑造先天性和适应性免疫,重点是代谢物短链脂肪酸和二胆酸。我们还全面描述了微生物群 - 免疫轴的破坏如何导致免疫介导的疾病,例如胃肠道感染,炎症性肠道疾病,心脏内代谢性疾病,心血管疾病,糖尿病,糖尿病,糖尿病和高度疾病,自动育种,自动繁殖(例如心脏血管疾病)高敏性(例如哮喘和过敏),心理疾病(例如焦虑症)和癌症(例如结肠直肠和肝癌)。我们进一步涵盖了粪便微生物群移植,益生菌,益生元和饮食多酚在重塑肠道菌群及其治疗潜力中的作用。继续,我们研究了肠道菌群如何调节免疫疗法,包括免疫检查点抑制剂,JAK抑制剂和抗TNF疗法。我们最后提到了宏基因组学,无菌模型和微生物群的当前挑战,以对肠道微生物群如何调节免疫力有基本的了解。总的来说,这篇综述提出了从微生物组靶向干预措施的角度改善免疫疗法的效率。
2024年10月,摘要清洁空气基金正在寻求机会支持对黑碳和黑色碳富含排放源的研究,重点是减少关键的科学不确定性并解决有关近期气候变化缓解的开放研究问题。感兴趣的研究领域包括推进黑碳观测,推进黑碳和共同发出的污染物排放库存,进行有针对性的区域建模以及探索合适的气候指标。拟议的研究计划已有2。5年。,鼓励感兴趣的组织的研究机构,大学,智囊团和财团通过为第4节中概述的四个问题提供简短答案,以提交这项资金的兴趣表达(EOI)。EOI提交的截止日期是2024年11月15日。平均赠款规模为300,000-500,000美元。CAF计划支持多个项目。1。上下文清洁空气基金(CAF)是一个全球慈善组织,与政府,资助者,企业和活动家一起创造一个每个人都呼吸清洁空气的未来。CAF具有针对超级污染物或短暂气候污染物(SLCP)的作用的工作计划。通过这项工作,我们支持并倡导空气污染和气候变化,以解决并提供高影响力的项目,以帮助减轻近期变暖1,避免气候临界点2 2,并减少空气污染的慢性健康影响3。我们在超级污染物上的工作重点是黑碳(请参阅此处的更多详细信息)。程序将:黑碳在气候和健康的交集中起着独特的作用,既是气候污染物又是空气污染物。这是颗粒物质空气污染的关键组成部分,也有助于全球变暖,破坏天气模式并加速雪和冰的融化。一些削减黑色碳资源排放量的措施提供了提供近期气候变化,避免气候转化点并实现清洁空气的机会。在COP28,CAF推出了对黑碳的行动。CAF的3年数百万美元工作计划的愿景是,到2030年,全球黑色碳排放量从2010年的基准减少了35%。
1 Liu,W.,Xie,S.-P.,Liu,Z。 &Zhu,J. 忽略了在温暖气候下倒塌的大西洋子午倾斜循环的可能性。 科学进步,7(2017)。 https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。 超过1.5度C的全球变暖可能会触发多个气候转化点。 Science 377,EABN7950(2022)。 https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。1 Liu,W.,Xie,S.-P.,Liu,Z。&Zhu,J.忽略了在温暖气候下倒塌的大西洋子午倾斜循环的可能性。科学进步,7(2017)。https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。 超过1.5度C的全球变暖可能会触发多个气候转化点。 Science 377,EABN7950(2022)。 https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。超过1.5度C的全球变暖可能会触发多个气候转化点。Science 377,EABN7950(2022)。https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。全球临界点报告2023。479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。479(埃克塞特大学,埃克塞特,英国,2023年)。4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。4 IPCC。气候变化2023:综合报告。工作组,II和III的贡献对政府间气候变化的第六次评估报告。184(IPCC,日内瓦,2023年)。5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。5 OECD。气候临界点:有效政策行动的见解。89(巴黎,2022年)。6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。6 Van Westen,R。M.,Kliphuis,M。A.和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。科学进步(2024)。https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。自然攀登。更改11,680-688(2021)。https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。千禧一代大西洋多年变化重建建议提示的临界点的预警信号。nat Commun 13,5176(2022)。自然556,191-196(2018)。自然通讯11(2020)。Oceanogr。Oceanogr。https://doi.org:10.1038/s41467-022-32704-3 9 Ditlevsen,P。&Ditlevsen,S。警告即将发生的大西洋子午倾斜循环循环性质的警告(20233)。 https://doi.org:10.1038/s41467-023-39810-w 10 Caesar,L.,Rahmstorf,S.,Robinson,A. https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。 https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41467-022-32704-3 9 Ditlevsen,P。&Ditlevsen,S。警告即将发生的大西洋子午倾斜循环循环性质的警告(20233)。https://doi.org:10.1038/s41467-023-39810-w 10 Caesar,L.,Rahmstorf,S.,Robinson,A.https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。 https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。自然食品1,22-23(2020)。https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。(2024)。https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:/doi.org/10.5670/oceanog.2024.501