我们解决这个问题的方法遵循一个两阶段流程:(1)自我运动估计和(2)检测和跟踪。这两个阶段都是完全卷积神经网络,可以扩展到高分辨率输入。它们在 Amazon Prime Air 发布的标记数据集上进行训练,该数据集包含 330 多万张飞机、直升机、无人机和其他飞行物体的图像。我们还开发了自己的飞机数据收集系统,并设计了一个定制的基于视觉的 DAA 有效载荷,用于飞行中相遇。通过对现实世界数据进行实证评估,我们的方法与两种基线检测和跟踪架构进行了比较,结果显示我们的方法更胜一筹。在 DAA 行业标准 (ASTM F3442/F3442M - 20) 的背景下分析我们的定量结果,我们还表明,所提出的方法可以满足某些类别的无人机的视觉 DAA 监视要求,这些无人机的最低巡航速度为 60-90kts,最低转弯率为 21-31 度/秒,最低爬升率为 250-500 英尺/分钟。
将来,自动车辆(AV)可能能够使用行人的头部运动模式来了解他们的交叉意图。AV预测行人交叉意图的这种能力将改善混合交通情况下的道路安全性,并可能增强交通流量,从而使车辆能够在产量之前逐渐降低速度,从而消除了完全且不稳定的停止。迄今为止,研究行人头部运动进行的大多数工作都是基于观察研究。为了进一步了解这一领域的理解,这项研究检查了在VR环境中开发的各种道路越过场景中与AVS互动时的行人头部运动。38名参与者参加了这项基于洞穴的行人模拟器研究。使用立体运动跟踪眼镜记录了头部运动,因为行人越过道路,以响应从右侧(英国道路)接近的AV。在一半的试验中包括了斑马穿越,以了解其如何影响交叉行为。还研究了AV的不同接近速度的影响,以及外部人机界面(EHMI)的存在对头部运动和交叉行为的影响。结果表明,在交叉开始前1 s左右,绝对的头转弯率(PE Destrians的头部转弯角变化)显着增加,在交叉开始时达到了峰值,在交叉决定之前,行人在交叉决定之前进行了“最后一秒钟的检查”。对于不可用的场景,还可以看到更高的转向率。在穿越末端(越过启动后约1.5 s)可以看到右侧的绝对转向率的另一种增加,以检查接近车辆的接近度。最后,在斑马横交的存在下,在包括EHMI的屈服条件下看到了最少的头转弯。这些结果表明,基于基础设施和车辆的线索在协助行人交叉决策方面的价值,并提供了有关AVS如何使用转弯行为来更好地预测行人在城市环境中的交叉意图的见解。