Power Solutions 为商业航空航天、国防和太空提供 ELDEC、Interpoint 和 Keltec 品牌的电源转换、配电和电池系统,用于航空电子设备、ATA 第 24 章电源系统、通信、电子对抗、导弹、雷达、导航、制导和公用系统。我们的电源产品以高性能和高可靠性而闻名,在军事/国防、航空航天、空间和工业应用中具有公认的性能。从模块化电源到定制设计的电源子系统,我们都能满足您的需求。我们提供的电源产品包括定制、半定制或现成产品。我们的质量体系确保可靠、可重复的流程和性能。
这些转换器对于实现可再生能源系统中电压水平的有效转换和控制至关重要。它们能够调整输出电压以满足各种负载的要求,确保稳定可靠的能量传输。然而,传统的转换器设计往往面临着效率损失、对不同输入条件的适应性有限以及热管理不足等挑战——这些问题在高电压水平下变得更加明显。这项研究的重点是开发和优化先进的 DC-DC 转换器,这些转换器专门用于可再生能源应用中的高压调节。通过探索新颖的转换器拓扑和创新的控制策略,我们的目标是在波动的能量输入背景下提高这些转换器的可靠性和有效性。此外,将这些转换器与储能系统和智能电网技术相结合对于优化能源利用率和提高整体系统弹性至关重要。这项调查同样着眼于与高压调节相关的技术挑战,但也有助于实现推进可持续能源基础设施的更广泛目标
公共引线电阻的误差会产生直流偏移电压。即使是积分 A/D 转换器的自动归零电路也无法消除此误差。但除此之外,此电流还会有几个变化的分量。时钟振荡器及其驱动的各种数字电路将显示时钟频率下的电源电流变化,通常也会显示亚倍数变化。对于逐次逼近转换器,这些变化将导致额外的有效偏移。对于积分转换器,至少高频分量应该平均。在某些转换器中,模拟电源电流也会随时钟(或亚倍数)频率而变化。如果显示器是多路复用的,则该电流将随多路复用频率而变化,通常是时钟频率的一小部分。对于积分转换器,数字和模拟部分电流都会随着转换器从一个转换阶段转到另一个转换阶段而变化。(注入自动归零环路的这种电流特别顽固。)另一个严重的变化源是数字和显示部分电流随结果值的变化。这通常表现为结果震荡和/或结果缺失;显示的一个值将有效输入替换为新值,该新值被转换并显示,导致不同的位移、新值等等。此序列通常在按顺序显示两个或三个值后关闭。
电能在航空网络中发挥着越来越重要的作用。这导致电力电子技术的强势崛起,它成为获得高性能、可靠和有竞争力的系统的关键技术领域。本论文是基于通用和模块化转换元件的电能处理架构辅助设计方法的一部分。在“更电气化”飞机网络框架内建立了静态转换器应用的普查,以划定转换模块的结构周长。这些元素的模块化为电源分段和冗余开辟了道路,建议通过实施容错转换器来利用这些功能,以提高系统的运行可用性。从这个角度来看,通过分析和基于电动静液飞行控制执行器多物理模型的仿真,对几种逆变器拓扑进行了比较。作为实验研究的一部分,所生产的转换模块特别包括用于实现可重构逆变器的适当功能,专用于永磁同步机的电源。该逆变器具有共享冗余,形式为连接到机器中性的第四个开关单元。最后,为了扩展该通用模块的范围,提出了不同的 AC-DC 转换拓扑来优化能源管理,与传统解决方案相比。通过对电气和热标准的定量比较,我们可以考虑每种结构的优点。
摘要 --- 参数设计对于确保功率转换器的整体性能令人满意具有重要意义。通常,功率转换器的电路参数设计包括两个过程:分析和推导过程和优化过程。现有的参数设计方法包括两种类型:传统方法、计算机辅助优化(CAO)方法。在传统方法中,需要严重依赖人。即使新兴的 CAO 方法使优化过程自动化,它们仍然需要手动的分析和推导过程。为了减轻对人的依赖以实现高精度和易于实施,本文提出了一种基于人工智能的设计(AI-D)方法用于功率转换器的参数设计。在提出的 AI-D 方法中,为了实现分析和推导过程的自动化,采用仿真工具和批量归一化神经网络(BN-NN)为优化目标和设计约束构建数据驱动模型。此外,为了实现优化过程的自动化,使用遗传算法来搜索最佳设计结果。所提出的 AI-D 方法在电动汽车 48 V 至 12 V 附件负载电源系统中同步 Buck 转换器的电路参数设计中得到了验证。给出了效率最优的同步 Buck 转换器的设计案例,该转换器在体积、电压纹波和电流纹波方面均有约束。最后,通过硬件实验验证了所提出的 AI-D 方法的可行性和准确性。索引术语 - 功率转换器、参数设计、人工智能、进化算法、神经网络。
环境和设备:· 环境温度范围................................. -10 至 40 摄氏度· 湿度................................................... <90%,无凝结· 海拔................................................... 所有规格均在海拔 < 2000m 处引用· 噪声................................................... < 50dBA @ 1m· 整体效率................................................... 85 至 91% 取决于型号· EMC................................................... 优于 EN55-022B· 机柜................................................... 镀锌钢,粉末涂层· 前面板................................................... 5U x 19”,阳极氧化铝· 机柜防护................................................... IP21· 仪表................................................... 数字读数输出输出安培、伏特(相间和相间中性线)、赫兹、千瓦和每相的功率因数。· CE 标志
TSL2560 和 TSL2561 是光-数字转换器,可将光强度转换为数字信号输出,可直接进行 I 2 C (TSL2561) 或 SMBus (TSL2560) 接口。每个设备将一个宽带光电二极管(可见光加红外光)和一个红外响应光电二极管组合在单个 CMOS 集成电路上,能够在有效的 20 位动态范围(16 位分辨率)上提供近明视响应。两个积分 ADC 将光电二极管电流转换为数字输出,该数字输出表示在每个通道上测量的辐照度。此数字输出可以输入到微处理器中,其中使用经验公式得出以勒克斯为单位的照度(环境光水平),以近似人眼响应。TSL2560 设备允许 SMB-Alert 样式中断,而 TSL2561 设备支持传统级别样式中断,该中断保持有效,直到固件清除它。
摘要 — 世界海洋蕴藏着巨大的能量,是一种很有前途的可再生能源。波浪能转换器 (WEC) 是一种正在开发的技术,可以高效、经济地从海洋中提取能量。WEC 的主要组件包括浮标、电机、储能系统和与陆上电网的连接。由于吸收海浪中的能量是一个复杂的流体动力学过程,因此必须使用动力输出 (PTO) 机制将浮标的机械运动转换为可用的电能。这种转换可以通过使用齿条齿轮系统将浮标的线速度转换为用于转动电机的转速来完成。为了从海浪中提取最多的能量,必须在电机上安装控制器,使浮标与海浪的频率产生共振。对于不规则的波浪气候,可以使用多共振控制器与波浪频谱产生共振并优化 WEC 的功率输出。索引词——波浪能转换器、能量捕获、多谐振控制、可再生能源
电子邮件:tvijaykumar@sjbit.edu.in)。 抽象的高端自动驾驶汽车预计至少具有一百个不同的电子子系统。 他们每个人都通过电源管理单元(PMU)从电池中拿起电力。 具有高效PMU至关重要,有望提供所需的不间断功率水平。 PMU由几个降压转换器组成,可将较高的电压水平转换为所需的较低电压水平。 如果PMU组成有效且结构良好的电压转换器,则更可靠。 在本文中,设计了一个耐故障的降压转换器,输出3.3伏。 提出了一种简单而有效的技术,可以通过绕过故障转换器腿来设计易耐故障的DC-DC转换器。 所提出的系统利用基于信号处理的方法进行故障检测。 仅在原主转换器的确认预后才能激活次级转换器。 输出铝电解电容器(AEC)电压中纹波含量被监测并用作转换器的主要健康指标。 在实验室中构建和测试了实验设置。 实验结果表明,从主要转换器到次级的平滑过渡表明了不间断的电源以及所提出的解决方案的简单性和有效性。 关键字铝电容电容器,电源管理单元,预后,波纹电压,电压调节器。电子邮件:tvijaykumar@sjbit.edu.in)。抽象的高端自动驾驶汽车预计至少具有一百个不同的电子子系统。他们每个人都通过电源管理单元(PMU)从电池中拿起电力。具有高效PMU至关重要,有望提供所需的不间断功率水平。PMU由几个降压转换器组成,可将较高的电压水平转换为所需的较低电压水平。如果PMU组成有效且结构良好的电压转换器,则更可靠。在本文中,设计了一个耐故障的降压转换器,输出3.3伏。提出了一种简单而有效的技术,可以通过绕过故障转换器腿来设计易耐故障的DC-DC转换器。所提出的系统利用基于信号处理的方法进行故障检测。仅在原主转换器的确认预后才能激活次级转换器。纹波含量被监测并用作转换器的主要健康指标。在实验室中构建和测试了实验设置。实验结果表明,从主要转换器到次级的平滑过渡表明了不间断的电源以及所提出的解决方案的简单性和有效性。关键字铝电容电容器,电源管理单元,预后,波纹电压,电压调节器。
为什么我们的技术很重要?地球能源计划面临着一个关键的挑战:对地下压力状态的有限和不可靠的理解。这种不确定性导致了几种严重的风险:诱发的地震性意外的断裂和断裂模式井眼不稳定性这些问题迫使操作员做出保守的操作决策,例如减少深度地热能,碳捕获和储存(CCS)以及地下氢气(CCS)等项目的注射压力。虽然这些措施旨在减轻风险,但它们导致水库的未利用不足,从而影响盈利能力和效率。对于核废物存储,对地下压力的准确评估对于确保存储地点的结构完整性并防止污染风险至关重要。与传统方法不同的是,我们的解决方案的好处,insitumetrix提供了基板中所有应力成分的精确测量,而无需裂缝。这些组件包括: